493
Views
6
CrossRef citations to date
0
Altmetric
Research Article

Electrohydrodynamic drying: Effects on food quality

& ORCID Icon
Pages 1745-1761 | Received 28 Jan 2021, Accepted 18 Mar 2021, Published online: 10 Apr 2021

References

  • Mujumdar, A. S. Handbook of Industrial Drying; CRC: Boca Raton, USA, 2014.
  • Guiné, R. P. F. The Drying of Foods and Its Effect on the Physical-Chemical, Sensorial and Nutritional Properties. Int. J. Food Eng. 2018, 4, 93–100. DOI: 10.18178/ijfe.4.2.93-100.
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319. DOI: 10.1016/S0260-8774. (00)00228-4. DOI: 10.1016/S0260-8774(00)00228-4.
  • Raghavi, L. M.; Moses, J. A.; Anandharamakrishnan, C. Refractance Window Drying of Foods: A Review. J. Food Eng. 2018, 222, 267–275. DOI: 10.1016/j.jfoodeng.2017.11.032.
  • Huang, D.; Men, K.; Li, D.; Wen, T.; Gong, Z.; Sunden, B.; Wu, Z. Application of Ultrasound Technology in the Drying of Food Products. Ultrason. Sonochem. 2020, 63, 104950. DOI: 10.1016/j.ultsonch.2019.104950.
  • Singh, A.; Orsat, V.; Raghavan, V. A Comprehensive Review on Electrohydrodynamic Drying and High-Voltage Electric Field in the Context of Food and Bioprocessing. Dry. Technol. 2012, 30, 1812–1820. DOI: 10.1080/07373937.2012.708912.
  • Defraeye, T.; Martynenko, A. Future Perspectives for Electrohydrodynamic Drying of. Biomater. Dry. Technol. 2018, 36, 1–10. DOI: 10.1080/07373937.2017.1326130.
  • Bashkir, I.; Defraeye, T.; Kudra, T.; Martynenko, A. Electrohydrodynamic Drying of Plant-Based Foods and Food Model Systems. Food Eng. Rev. 2020, 12, 473–497. DOI: 10.1007/s12393-020-09229-w.
  • Allen, P. H. G.; Karayiannis, T. G. Electrohydrodynamic Enhancement of Heat Transfer and Fluid Flow. Heat Recover. Syst. CHP 1995, 15, 389–423. DOI: 10.1016/0890-4332(95)90050-0.
  • Ni, J.; Ding, C.; Zhang, Y.; Song, Z.; Xu, W. Influence of Ultrasonic Pretreatment on Electrohydrodynamic Drying Process of Goji Berry. J. Food Process. Preserv. 2020, 44, 1–16. DOI: 10.1111/jfpp.14600.
  • Liang, Y. Z.; Ding, C. J. High Voltage Electric Field Drying. In Modern Drying Technologies (in Chinese); Pan, Y., Wang, X., Liu, X., Eds.; Chemical Industry Press: Beijing, 2006; pp 840–858.
  • Hashinaga, F.; Bajgai, T. R.; Isobe, S.; Barthakur, N. N. Electrohydrodynamic (EHD) Drying of Apple Slices. Dry. Technol. 1999, 17, 479–495. DOI: 10.1080/07373939908917547.
  • Kudra, T.; Martynenko, A. Electrohydrodynamic Drying: Theory and Experimental Validation. Dry. Technol. 2020, 38, 168–175. DOI: 10.1080/07373937.2019.1628773.
  • Martynenko, A.; Zheng, W. Electrohydrodynamic Drying of Apple Slices: Energy and Quality Aspects. J. Food Eng. 2016, 168, 215–222. DOI: 10.1016/j.jfoodeng.2015.07.043.
  • Lai, F. C.; Sharma, R. K. EHD-Enhanced Drying with Multiple Needle Electrode. J. Electrostat. 2005, 63, 223–237. DOI: 10.1016/j.elstat.2004.10.004.
  • Martynenko, A.; Kudra, T. Electrically-Induced Transport Phenomena in EHD Drying - A Review. Trends Food Sci. Technol. 2016, 54, 63–73. DOI: 10.1016/j.tifs.2016.05.019.
  • Bajgai, T. R.; Hashinaga, F. Drying of Spinach with a High Electric Field. Dry. Technol. 2001, 19, 2331–2341. DOI: 10.1081/DRT-100107502.
  • Martynenko, A.; Bashkir, I.; Kudra, T. Electrically Enhanced Drying of White Champignons. Dry. Technol. 2021, 39(2), 234–244. DOI: 10.1080/07373937.2019.1670672.
  • Gomez-Estaca, J.; Balaguer, M. P.; Gavara, R.; Hernandez-Munoz, P. Formation of Zein Nanoparticles by Electrohydrodynamic Atomization: Effect of the Main Processing Variables and Suitability for Encapsulating the Food Coloring and Active Ingredient Curcumin. Food Hydrocoll. 2012, 28, 82–91. DOI: 10.1016/j.foodhyd.2011.11.013.
  • Fabra, M. J.; López-Rubio, A.; Lagaron, J. M. Use of the Electrohydrodynamic Process to Develop Active/Bioactive Bilayer Films for Food Packaging Applications. Food Hydrocoll. 2016, 55, 11–18. DOI: 10.1016/j.foodhyd.2015.10.026.
  • Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A. Effect of Freezing under Electrostatic Field on the Quality of Lamb Meat. Innov. Food Sci. Emerg. Technol. 2016, 37, 68–73. DOI: 10.1016/j.ifset.2016.07.028.
  • Mousakhani-Ganjeh, A.; Hamdami, N.; Soltanizadeh, N. Impact of High Voltage Electric Field Thawing on the Quality of Frozen Tuna Fish (Thunnus albacares). J. Food Eng. 2015, 156, 39–44. DOI: 10.1016/j.jfoodeng.2015.02.004.
  • Puértolas, E.; Koubaa, M.; Barba, F. J. An Overview of the Impact of Electrotechnologies for the Recovery of Oil and High-Value Compounds from Vegetable Oil Industry: Energy and Economic Cost Implications. Food Res. Int. 2016, 80, 19–26. DOI: 10.1016/j.foodres.2015.12.009.
  • Locke, B. R.; Sato, M.; Sunka, P.; Hoffmann, M. R.; Chang, J. S. Electrohydraulic Discharge and Nonthermal Plasma for Water Treatment. Ind. Eng. Chem. Res. 2006, 45, 882–905. DOI: 10.1021/ie050981u.
  • Boussetta, N.; Vorobiev, E. Extraction of Valuable Biocompounds Assisted by High Voltage Electrical Discharges: A Review. C. R. Chim. 2014, 17, 197–203. DOI: 10.1016/j.crci.2013.11.011.
  • Mohamed, M. E. A.; Amer Eissa, A. H. Pulsed Electric Fields for Food Processing Technology. Struct. Funct. Food Eng. 2012, 11, 275–306. DOI: 10.5772/48678.
  • Timmermans, R. A. H.; Mastwijk, H. C.; Berendsen, L. B. J. M.; Nederhoff, A. L.; Matser, A. M.; Van Boekel, M. A. J. S.; Nierop Groot, M. N. Moderate Intensity Pulsed Electric Fields (PEF) as Alternative Mild Preservation Technology for Fruit Juice. Int. J. Food Microbiol. 2019, 298, 63–73. DOI: 10.1016/j.ijfoodmicro.2019.02.015.
  • Zhang, Q.; Barbosa-Cánovas, G. V.; Swanson, B. G. Engineering Aspects of Pulsed Electric Field Pasteurization. J. Food Eng. 1995, 25, 261–281. DOI: 10.1016/0260-8774. DOI: 10.1016/0260-8774(94)00030-D.
  • Yan, L. G.; He, L.; Xi, J. High Intensity Pulsed Electric Field as an Innovative Technique for Extraction of Bioactive Compounds-A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2877–2888. DOI: 10.1080/10408398.2015.1077193.
  • Onwude, D. I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A. O. Non-Thermal Hybrid Drying of Fruits and Vegetables: A Review of Current Technologies. Innov. Food Sci. Emerg. Technol. 2017, 43, 223–238. DOI: 10.1016/j.ifset.2017.08.010.
  • Shynkaryk, M. V.; Lebovka, N. I.; Vorobiev, E. Pulsed Electric Fields and Temperature Effects on Drying and Rehydration of Red Beetroots. Dry. Technol. 2008, 26, 695–704. DOI: 10.1080/07373930802046260.
  • Lu, P.; Cullen, P. J.; Ostrikov, K. Atmospheric Pressure Nonthermal Plasma Sources. In Cold Plasma in Food and Agriculture: Fundamentals and Applications; Academic Press: London, UK, 2016; pp 83–116 DOI: 10.1016/B978-0-12-801365-6.00004-4.
  • Misra, N. N.; Tiwari, B. K.; Raghavarao, K. S. M. S.; Cullen, P. J. Nonthermal Plasma Inactivation of Food-Borne Pathogens. Food Eng. Rev. 2011, 3, 159–170. DOI: 10.1007/s12393-011-9041-9.
  • Thirumdas, R.; Sarangapani, C.; Annapure, U. S. Cold Plasma: A Novel Non-Thermal Technology for Food Processing. Food Biophys. 2015, 10, 1–11. DOI: 10.1007/s11483-014-9382-z.
  • Ashtiani, S. H. M.; Rafiee, M.; Mohebi Morad, M.; Khojastehpour, M.; Khani, M. R.; Rohani, A.; Shokri, B.; Martynenko, A. Impact of Gliding Arc Plasma Pretreatment on Drying Efficiency and Physicochemical Properties of Grape. Innov. Food Sci. Emerg. Technol. 2020, 63, 102381. DOI: 10.1016/j.ifset.2020.102381.
  • Zhang, X. L.; Zhong, C. S.; Mujumdar, A. S.; Yang, X. H.; Deng, L. Z.; Wang, J.; Xiao, H. W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum annuum L.). J. Food Eng. 2019, 241, 51–57. DOI: 10.1016/j.jfoodeng.2018.08.002.
  • Li, S.; Chen, S.; Han, F.; Xv, Y.; Sun, H.; Ma, Z.; Chen, J.; Wu, W. Development and Optimization of Cold Plasma Pretreatment for Drying on Corn Kernels. J. Food Sci. 2019, 84, 2181–2189. DOI: 10.1111/1750-3841.14708.
  • Kulacki, F. A. Electrohydrodynamic Enhancement of Convective Heat and Mass Transfer. In Advances in Transport Processes; Wiley Eastern Ltd: NY, 1982; Vol. 2, pp 105–147.
  • Chen, J.; Davidson, J. H. Ozone Production in the Positive DC Corona Discharge: Model and Comparison to Experiments. Plasma Chem. Plasma Process. 2002, 22, 495–522. DOI: 10.1023/A:1021315412208.
  • Misra, N. N.; Martynenko, A.; Chemat, F.; Paniwnyk, L.; Barba, F. J.; Jambrak, A. R. Thermodynamics, Transport Phenomena, and Electrochemistry of External Field-Assisted Nonthermal Food Technologies. Crit. Rev. Food Sci. Nutr. 2018, 58, 1832–1863. DOI: 10.1080/10408398.2017.1287660.
  • Atungulu, G.; Atungulu, E.; Okada, R.; Nishiyama, Y. Efficacy of High Voltage Treatment on Tomato Storage. J. Food Technol. 2005, 3, 209–215.
  • Misra, N. N.; Keener, K. M.; Bourke, P.; Mosnier, J. P.; Cullen, P. J. In-Package Atmospheric Pressure Cold Plasma Treatment of Cherry Tomatoes. J. Biosci. Bioeng. 2014, 118, 177–182. DOI: 10.1016/j.jbiosc.2014.02.005.
  • Polat, A.; Izli, N. Determination of Drying Kinetics and Quality Parameters for Drying Apricot Cubes with Electrohydrodynamic, Hot Air and Combined Electrohydrodynamic-Hot Air Drying Methods. Dry. Technol. 2020, 1–16. DOI: 10.1080/07373937.2020.1812633.
  • Esehaghbeygi, A.; Pirnazari, K.; Sadeghi, M. Quality Assessment of Electrohydrodynamic and Microwave Dehydrated Banana Slices. LWT - Food Sci. Technol. 2014, 55, 565–571. DOI: 10.1016/j.lwt.2013.10.010.
  • Alemrajabi, A. A.; Rezaee, F.; Mirhosseini, M.; Esehaghbeygi, A. Comparative Evaluation of the Effects of Electrohydrodynamic, Oven, and Ambient Air on Carrot Cylindrical Slices during Drying Process. Dry. Technol. 2012, 30, 88–96. DOI: 10.1080/07373937.2011.608913.
  • Ding, C.; Lu, J.; Song, Z. Electrohydrodynamic Drying of Carrot Slices. PLoS One 2015, 10, e0124077–12. DOI: 10.1371/journal.pone.0124077.
  • Yang, M.; Ding, C. Electrohydrodynamic (EHD) Drying of the Chinese Wolfberry Fruits. Springerplus 2016, 5, 1–20. DOI: 10.1186/s40064-016-2546-1.
  • Yang, M.; Ding, C.; Zhu, J. The Drying Quality and Energy Consumption of Chinese Wolfberry Fruits under Electrohydrodynamic System. Int. J. Appl. Electromagn. Mech. 2017, 55, 101–112. DOI: 10.3233/JAE-170010.
  • Ni, J.; Ding, C.; Zhang, Y.; Song, Z.; Hu, X.; Hao, T. Electrohydrodynamic Drying of Chinese Wolfberry in a Multiple Needle-to-Plate Electrode System. Foods 2019, 8, 152. DOI: 10.3390/foods8050152.
  • Ni, J.; Ding, C.; Zhang, Y.; Song, Z.; Hu, X.; Hao, T. Effect of Electrohydrodynamic Partially Combined with Oven Drying on Chinese Wolfberry. Int. J. Appl. Electromagn. Mech. 2020, 63, 465–482. DOI: 10.3233/JAE-190066.
  • Bajgai, T. R.; Hashinaga, F.; Isobe, S.; Vijaya Raghavan, G. S.; Ngadi, M. O. Application of High Electric Field (HEF) on the Shelf-Life Extension of Emblic Fruit (Phyllanthus emblica L. ). J. Food Eng. 2006, 74, 308–313. DOI: 10.1016/j.jfoodeng.2005.03.023.
  • Ni, J.; Ding, C.; Zhang, Y.; Song, Z. Impact of Different Pretreatment Methods on Drying Characteristics and Microstructure of Goji Berry under Electrohydrodynamic (EHD) Drying Process. Innov. Food Sci. Emerg. Technol. 2020, 61, 102318. DOI: 10.1016/j.ifset.2020.102318.
  • Dutta, B.; Raghavan, G. S. V.; Dev, S. R. S.; Liplap, P.; Murugesan, R.; Anekella, K.; Kaushal, T. A Comparative Study on the Effects of Microwave and High Electric Field Pretreatments on Drying Kinetics and Quality of Mushrooms. Dry. Technol. 2012, 30, 891–897. DOI: 10.1080/07373937.2012.678957.
  • Dinani, S. T.; Hamdami, N.; Shahedi, M.; Havet, M. Quality Assessment of Mushroom Slices Dried by Hot Air Combined with an Electrohydrodynamic (EHD) Drying System. Food Bioprod. Process. 2015, 94, 572–580. DOI: 10.1016/j.fbp.2014.08.004.
  • Dinani, S. T.; Havet, M. Effect of Voltage and Air Flow Velocity of Combined Convective-Electrohydrodynamic Drying System on the Physical Properties of Mushroom Slices. Ind. Crops Prod. 2015, 70, 417–426. DOI: 10.1016/j.indcrop.2015.03.047.
  • Chen, Y.; Barthakur, N. N.; Arnold, N. P. Electrohydrodynamic (EHD) Drying of Potato Slabs. J. Food Eng. 1994, 23, 107–119. DOI: 10.1016/0260-8774. (94)90126-0. DOI: 10.1016/0260-8774(94)90126-0.
  • Singh, A.; Nair, G. R.; Rahimi, J.; Gariepy, Y.; Raghavan, V. Effect of Static High Electric Field Pre-Treatment on Microwave-Assisted Drying of Potato Slices. Dry. Technol. 2013, 31, 1960–1968. DOI: 10.1080/07373937.2013.805142.
  • Yu, H. J.; Bai, A. Z.; Yang, X. W.; Wang, Y. L. Electrohydrodynamic Drying of Potato and Process Optimization. J. Food Process. Preserv. 2018, 42, 1–9. DOI: 10.1111/jfpp.13492.
  • Elmizadeh, A.; Shahedi, M.; Hamdami, N. Comparison of Electrohydrodynamic and Hot-Air Drying of the Quince Slices. Innov. Food Sci. Emerg. Technol. 2017, 43, 130–135. DOI: 10.1016/j.ifset.2017.07.030.
  • Elmizadeh, A.; Shahedi, M.; Hamdami, N. Quality Assessment of Electrohydrodynamic and Hot-Air Drying of Quince Slice. Ind. Crops Prod. 2018, 116, 35–40. DOI: 10.1016/j.indcrop.2018.02.048.
  • Bajgai, T. R.; Hashinaga, F. High Electric Field Drying of Japanese Radish. Dry. Technol. 2001, 19, 2291–2302. DOI: 10.1081/DRT-100107499.
  • Esehaghbeygi, A.; Basiry, M. Electrohydrodynamic (EHD) Drying of Tomato Slices (Lycopersicon esculentum). J. Food Eng. 2011, 104, 628–631. DOI: 10.1016/j.jfoodeng.2011.01.032.
  • Tamarit-Pino, Y.; Batías-Montes, J. M.; Segura-Ponce, L. A.; Díaz-Álvarez, R. E.; Guzmán-Meza, M. F.; Quevedo-León, R. A. Effect of Electrohydrodynamic Pretreatment on Drying Rate and Rehydration Properties of Chilean Sea Cucumber (Athyonidium chilensis). Food Bioprod. Process. 2020, 123, 284–295. DOI: 10.1016/j.fbp.2020.07.012.
  • Bai, Y.; Li, J.; Mei, Y.; Kang, D. M. Experiment of Drying Kelp with High Voltage Electric Fields. In 2008 International Conference on High Voltage Engineering and Application, Chongqing, China, November 9-13; IEEE, 2008; pp 732–734. DOI: 10.1109/ICHVE.2008.4774039.
  • Bai, Y.; Yang, G. J.; Hu, Y. C.; Qu, M. Physical and Sensory Properties of Electrohydrodynamic (EHD) Dried Scallop Muscle. J. Aquat. Food Prod. Technol. 2012, 21, 238–247. DOI: 10.1080/10498850.2011.590271.
  • Bai, Y.; Sun, B. Study of Electrohydrodynamic (EHD) Drying Technique for Shrimps. J. Food Process. Preserv. 2011, 35, 891–897. DOI: 10.1111/j.1745-4549.2011.00542.x.
  • Bai, Y.; Yang, Y.; Huang, Q. Combined Electrohydrodynamic (EHD) and Vacuum Freeze Drying of Sea Cucumber. Dry. Technol. 2012, 30, 1051–1055. DOI: 10.1080/07373937.2012.663435.
  • Bai, Y.; Qu, M.; Luan, Z.; Li, X.; Yang, Y. Electrohydrodynamic Drying of Sea Cucumber (Stichopus japonicus). LWT - Food Sci. Technol. 2013, 54, 570–576. DOI: 10.1016/j.lwt.2013.06.026.
  • Basiry, M.; Esehaghbeygi, A. Electrohydrodynamic (EHD) Drying of Rapeseed (Brassica napus L.). J. Electrostat. 2010, 68, 360–363. DOI: 10.1016/j.elstat.2010.05.002.
  • Cao, W.; Nishiyama, Y.; Koide, S.; Lu, Z. H. Drying Enhancement of Rough Rice by an Electric Field. Biosyst. Eng. 2004, 87, 445–451. DOI: 10.1016/j.biosystemseng.2003.12.007.
  • Esehaghbeygi, A. Effect of Electrohydrodynamic and Batch Drying on Rice Fissuring. Dry. Technol. 2012, 30, 1644–1648. DOI: 10.1080/07373937.2012.701262.
  • Tirawanichakul, S.; Tasara, J.; Tirawanichakul, Y. High Electric Field Enhance Drying and Aging of Rough Rice. In Commemorative International Conference on the Occasion of the 4th Cycle Celebration of KMUTT Sustainable Development to save the Earth: Technologies and Strategies Vision 2050: (SDSE2008); Bangkok, Thailand, 2009; pp 428–433.
  • Singh, A.; Vanga, S. K.; Nair, G. R.; Gariepy, Y.; Orsat, V.; Raghavan, V. Electrohydrodynamic Drying (EHD) of Wheat and Its Effect on Wheat Protein Conformation. LWT - Food Sci. Technol. 2015, 64, 750–758. DOI: 10.1016/j.lwt.2015.06.051.
  • Martynenko, A.; Kudra, T. Electrohydrodynamic (EHD) Drying of Grape Pomace. Jpn. J. Food Eng. 2016, 17, 123–129. DOI: 10.11301/jsfe.17.123.
  • Li, F.; De; Li, L.; Te; Sun, J. F.; Tatsumi, E. Effect of Electrohydrodynamic (EHD) Technique on Drying Process and Appearance of Okara Cake. J. Food Eng. 2006, 77, 275–280. DOI: 10.1016/j.jfoodeng.2005.06.028.
  • Xue, X.; Barthakur, N. N.; Alli, I. Electrohydrodynamically-Dried Whey Protein: An Electrophoretic and Differential Calorimetric Analysis. Dry. Technol. 1999, 17, 467–478. DOI: 10.1080/07373939908917546.
  • Francis, F. J. Quality as Influenced by Color. Food Qual. Prefer. 1995, 6, 149–155. DOI: 10.1016/0950-3293. DOI: 10.1016/0950-3293(94)00026-R.
  • Shoji, T. Polyphenols as Natural Food Pigments: Changes during Food Processing. Am. J. Food Technol. 2007, 2, 570–581. DOI: 10.3923/ajft.2007.570.581.
  • Hari, R. V. K.; Patel, T. R.; Martin, A. M. An Overview of Pigment Production in Biological Systems: Functions, Biosynthesis, and Applications in Food Industry. Food Rev. Int. 1994, 10, 49–70. DOI: 10.1080/87559129409540985.
  • Lewicki, P. P.; Duszczyk, E. Color Change of Selected Vegetables during Convective Air Drying. Int. J. Food Prop. 1998, 1, 263–273. DOI: 10.1080/10942919809524582.
  • Misra, N. N. Quality of Cold Plasma Treated Plant Foods. In Cold Plasma in Food and Agriculture; Academic Press: London, UK, 2016; pp 253–268. DOI: 10.1016/b978-0-12-801365-6.09991-1.
  • Martynenko, A. Computer Vision for Real-Time Control in Drying. Food Eng. Rev. 2017, 9, 91–111. DOI: 10.1007/s12393-017-9159-5.
  • Kotwaliwale, N.; Bakane, P.; Verma, A. Changes in Textural and Optical Properties of Oyster Mushroom during Hot Air Drying. J. Food Eng. 2007, 78, 1207–1211. DOI: 10.1016/j.jfoodeng.2005.12.033.
  • Martynenko, A.; Janaszek, M. A. Texture Changes during Drying of Apple Slices. Dry. Technol. 2014, 32, 567–577. DOI: 10.1080/07373937.2013.845573.
  • Chen, L.; Opara, U. L. Texture Measurement Approaches in Fresh and Processed Foods - A Review. Food Res. Int. 2013, 51, 823–835. DOI: 10.1016/j.foodres.2013.01.046.
  • Bourne, M. Food Texture & Viscosity. Concept and Measurements; Academic Press: San Diego, CA, USA, 2002.
  • Gulati, T.; Datta, A. K. Mechanistic Understanding of Case-Hardening and Texture Development during Drying of Food Materials. J. Food Eng. 2015, 166, 119–138. DOI: 10.1016/j.jfoodeng.2015.05.031.
  • Thirumdas, R.; Saragapani, C.; Ajinkya, M. T.; Deshmukh, R. R.; Annapure, U. S. Influence of Low Pressure Cold Plasma on Cooking and Textural Properties of Brown Rice. Innov. Food Sci. Emerg. Technol. 2016, 37, 53–60. DOI: 10.1016/j.ifset.2016.08.009.
  • Lai, F. C.; Lai, K. W. EHD-Enhanced Drying with Wire Electrode. Dry. Technol. 2002, 20, 1393–1405. DOI: 10.1081/DRT-120005858.
  • Martynenko, A.; Astatkie, T.; Riaud, N.; Wells, P.; Kudra, T. Driving Forces for Mass Transfer in Electrohydrodynamic (EHD) Drying. Innov. Food Sci. Emerg. Technol. 2017, 43, 18–25. DOI: 10.1016/j.ifset.2017.07.022.
  • Mahiuddin, M.; Khan, M. I. H.; Kumar, C.; Rahman, M. M.; Karim, M. A. Shrinkage of Food Materials during Drying: Current Status and Challenges. Compr. Rev. Food Sci. Food Saf. 2018, 17, 1113–1126. DOI: 10.1111/1541-4337.12375.
  • Marabi, A.; Saguy, I. S. Effect of Porosity on Rehydration of Dry Food Particulates. J. Sci. Food Agric. 2004, 84, 1105–1110. DOI: 10.1002/jsfa.1793.
  • Berk, Z. D. Food Process Engineering and Technology; Academic Press: London, UK, 2009; pp 459–510. DOI: 10.1007/978-3-642-33335-4_40374.
  • Ngamwonglumlert, L.; Devahastin, S. Microstructure and Its Relationship with Quality and Storage Stability of Dried Foods. In Food Microstructure and Its Relationship with Quality and Stability; Woodhead Publishing: Duxford, UK, 2017; pp 139–159. DOI: 10.1016/B978-0-08-100764-8.00008-3.
  • Saguy, I. S.; Marabi, A.; Wallach, R. New Approach to Model Rehydration of Dry Food Particulates Utilizing Principles of Liquid Transport in Porous Media. Trends Food Sci. Technol. 2005, 16, 495–506. DOI: 10.1016/j.tifs.2005.07.006.
  • Atungulu, G.; Atungulu, E.; Nishiyama, Y. Electrode Configuration and Treatment Timing Effects of Electric Fields on Fruit Putrefaction and Molding Post Harvest. J. Food Eng. 2005, 70, 506–511. DOI: 10.1016/j.jfoodeng.2004.10.020.
  • Dinani, S. T.; Hamdami, N.; Shahedi, M.; Havet, M.; Queveau, D. Influence of the Electrohydrodynamic Process on the Properties of Dried Button Mushroom Slices: A Differential Scanning Calorimetry (DSC) Study. Food Bioprod. Process. 2015, 95, 83–95. DOI: 10.1016/j.fbp.2015.04.001.
  • Pankaj, S.; Wan, Z.; Keener, K. Effects of Cold Plasma on Food Quality: A Review. Foods 2018, 7, 4. DOI: 10.3390/foods7010004.
  • Stone, H.; Bleibaum, R. N.; Thomas, H. A. Measurement. In Sensory Evaluation Practices; Academic Press: San Diego, CA, USA, 2012; pp 81–115. DOI: 10.1016/B978-0-12-382086-0.00003-0.
  • Zhang, M.; Chen, H.; Mujumdar, A. S.; Tang, J.; Miao, S.; Wang, Y. Recent Developments in High-Quality Drying of Vegetables, Fruits, and Aquatic Products. Crit. Rev. Food Sci. Nutr. 2017, 57, 1239–1255. DOI: 10.1080/10408398.2014.979280.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.