Publication Cover
Drying Technology
An International Journal
Volume 39, 2021 - Issue 8
292
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Energy model-based benchmarking of the drying process in the stenter machine

, , , &
Pages 1114-1133 | Received 28 Sep 2020, Accepted 19 Mar 2021, Published online: 06 Apr 2021

References

  • Aranda-Usón, A.; Ferreira, G.; Mainar-Toledo, M. D.; Scarpellini, S.; Llera Sastresa, E. Energy Consumption Analysis of Spanish Food and Drink, Textile, Chemical and Non-Metallic Mineral Products Sectors. Energy. 2012, 42, 477–485. DOI: 10.1016/j.energy.2012.03.021.
  • Streat Instruments – Saving Money with Dryer Control. 2018. http://www.streatsahead.com/what-we-do/drycom/93-saving-money-with-drycom (Dec 19 2018).
  • Xue, L. Process Optimization of Dryers/Tenters in the Textile Industry Georgia Institute of Technology, Atlanta, United State of America; 2004.
  • Hasanbeigi, A.; Hasanabadi, A.; Abdorrazaghi, M. Energy Efficiency Technologies and Comparing the Energy Intensity in the Textile Industry. Proceedings ACEEE Summer Study on Energy Efficiency in Industry, 2011, Vol. 1, 34–46.
  • Detailed Project Report on Installation of Waste Heat Recovery System in Stenter-Pali Textile Cluster; Ministry of Power, New Delhi, Government of India, 2004.
  • Çay, A. Energy Consumption and Energy Saving Potential in Clothing Industry. Energy. 2018, 159, 74–85. DOI: 10.1016/j.energy.2018.06.128.
  • Israr, M.; Gangele, A. Bench Marking and Best Practices in Textile Industry. Int. J. Mech. Mechatron. Eng. 2012, 12, 1–8.
  • Santos, R. M.; Llanos, J. W. P.; Quadri, M. B.; da Rocha, I. C. C. Study of Drying and Consumption of Natural Gas in a Textile Stenter of Direct Heating. Drying Technol. 2015, 33, 37–54. DOI: 10.1080/07373937.2014.932286.
  • Fiaschi, D.; Manfrida, G.; Russo, L.; Talluri, L. Improvement of Waste Heat Recuperation on an Industrial Textile Dryer: Redesign of Heat Exchangers Network and Components. Energy Convers. Manage. 2017, 150, 924–940. DOI: 10.1016/j.enconman.2017.05.053.
  • Dincer, I.; Sahin, A. Z. A New Model for Thermodynamic Analysis of a Drying Process. Int. J. Heat Mass Transf. 2004, 47, 645–652. DOI: 10.1016/j.ijheatmasstransfer.2003.08.013.
  • Oǧulata, R. T. Utilization of Waste-Heat Recovery in Textile Drying. Appl. Energy 2004, 79, 41–49. DOI: 10.1016/j.apenergy.2003.12.002.
  • Adelaar, M.; Kynoch, B.; Lemoine, Y.; Robinson, T. Energy Benchmarking Best Practices in Canadian Textiles Wet Processing. Proceedings ACEEE Summer Study on Energy Efficiency in Industry, 2005, 6–13.
  • Kudra, T. Energy Performance of Convective Dryers. Drying Technol. 2012, 30, 1190–1198. DOI: 10.1080/07373937.2012.690803.
  • Peng, L.; Zhang, Y.; Wang, Y.; Zeng, X.; Peng, N.; Yu, A. Energy Efficiency and Influencing Factor Analysis in the Overall Chinese Textile Industry. Energy. 2015, 93, 1222–1229. DOI: 10.1016/j.energy.2015.09.075.
  • Sousa, L. H. C. D.; Motta Lima, O. C.; Pereira, N. C. Analysis of Drying Kinetics and Moisture Distribution in Convective Textile Fabric Drying. Drying Technol. 2006, 24, 485–497. DOI: 10.1080/07373930600611984.
  • Cay, A.; Tarakçıoǧlu, I.; Hepbasli, A. Exergetic Performance Assessment of a Stenter System in a Textile Finishing Mill. Int. J. Energy Res. 2007, 31, 1251–1265. DOI: 10.1002/er.1295.
  • Cay, A.; Tarakçıoğlu, I.; Hepbasli, A. Exergetic Analysis of Textile Convective Drying with Stenters by Subsystem Models: Part 1-Exergetic Modeling and Evaluation. Drying Technol. 2010, 28, 1359–1367. DOI: 10.1080/07373937.2010.482695.
  • Cay, A.; Tarakçıoğlu, I.; Hepbasli, A.; Tarakçioǧlu, I. Exergetic Analysis of Textile Convective Drying with Stenters by Subsystem Models : Part 2—Parametric Study on Exergy Analysis. Drying Technol. 2010, 28, 1368–1376. DOI: 10.1080/07373937.2010.482696.
  • Hasanbeigi, A. Energy-Efficiency Improvement Opportunities for the Textile Industry. Ernest Orlando Lawrence Berkeley National Laboratory, 2010, 136.
  • Özer, B.; Güven, B. Energy Efficiency Analyses in a Turkish Fabric Dyeing Factory. Energy Sources. Part A. 2020, 43, 1–23. DOI: 10.1080/15567036.2020.1755392.
  • Wei, Y.; Ding, X. Exergy Analysis of Porous Cotton Fabric Drying Process during the Domestic Air Vented Dryer. Indian J. Fibre Text. Res. 2018, 43, 320–329.
  • Mondal, S.; Dutta, S.; Agarwala, P.; Nimbalkar, V.; Dhumal, S. S. Intensification of Cellulosic Fiber Drying through Fundamental Insights and Process Modeling. Drying Technol. 2020, 38, 2151–2161. DOI: 10.1080/07373937.2019.1685538.
  • Yu, X.; Cao, W.; Ding, X. The Effects of Fabric’s Mechanical Properties on Its Motion and Drying Performance in a Domestic Tumble Dryer. Drying Technol. 2020, 39, 1–20. DOI: 10.1080/07373937.2020.1711523.
  • Vázquez, G.; Chenlo, F.; Moreira, R. Modeling of Desorption Isotherms of Chestnut: Influence of Temperature and Evaluation of Isosteric Heats. Drying Technol. 2001, 19, 1189–1199. DOI: 10.1081/DRT-100104814.
  • Sardeshpande, V.; Gaitonde, U. N.; Banerjee, R. Model Based Energy Benchmarking for Glass Furnace. Energy Convers. Manage. 2007, 48, 2718–2738. DOI: 10.1016/j.enconman.2007.04.013.
  • Sardeshpande, V. R.; Shendage, D. J.; Pillai, I. R. Thermal Performance Evaluation of a Four Pan Jaggery Processing Furnace for Improvement in Energy Utilization. Energy 2010, 35, 4740–4747. DOI: 10.1016/j.energy.2010.09.018.
  • Zogla, L.; Zogla, G.; Beloborodko, A.; Rosa, M. Process Benchmark for Evaluation Energy Performance in Breweries. Energy Proc. 2015, 72, 202–208. DOI: 10.1016/j.egypro.2015.06.029.
  • Bade, M. H.; Bandyopadhyay, S. Energy Modelling of Thermal Oil Based Cooking System. Energy Proc. 2015, 75, 1746–1751. DOI: 10.1016/j.egypro.2015.07.448.
  • Mirzakhani, M. A.; Tahouni, N.; Panjeshahi, M. H. Energy Benchmarking of Cement Industry, Based on Process Integration Concepts. Energy. 2017, 130, 382–391. DOI: 10.1016/j.energy.2017.04.085.
  • Saygin, D.; Worrell, E.; Patel, M. K.; Gielen, D. J. Benchmarking the Energy Use of Energy-Intensive Industries in Industrialized and in Developing Countries. Energy 2011, 36, 6661–6673. DOI: 10.1016/j.energy.2011.08.025.
  • Laurijssen, J.; De Gram, F. J.; Worrell, E.; Faaij, A. Optimizing the Energy Efficiency of Conventional Multi-Cylinder Dryers in the Paper Industry. Energy 2010, 35, 3738–3750. DOI: 10.1016/j.energy.2010.05.023.
  • Chen, X.; Li, J.; Liu, H.; Yin, Y.; Hong, M.; Zeng, Z. Energy System Diagnosis of Paper-Drying Process, Part 1: Energy Performance Assessment. Drying Technol. 2016, 34, 930–943. DOI: 10.1080/07373937.2015.1087022.
  • Chen, X.; Li, J.; Liu, H.; Yin, Y.; Zhang, Y. Energy System Diagnosis of Paper-Drying Process, Part 2: A Model-Based Estimation of Energy-Saving Potentials. Drying Technol. 2016, 34, 1219–1230. DOI: 10.1080/07373937.2015.1095206.
  • Erdumlu, N. Efficiency Benchmarking Based on Data Envelopment Analysis: A Case for Turkish Textile Sector. J. Text. Inst. 2016, 107, 702–710. DOI: 10.1080/00405000.2015.1061737.
  • Karnik, K. Energy Efficiency in Stenter Operation Indian Institute of Technology Bombay, Project report, Mumbai, India, 2009.
  • Rouette, H.-K.; Lindner, A.; Schwager, B. Encyclopedia of Textile Finishing; 4th ed. Springer: Berlin, 2001.
  • Krajačić, G.; Vujanovic, M.; Duić, N.; Kılkış, Ş.; Rosen, M. A.; Al-Nimr, M. A. Integrated Approach for Sustainable Development of Energy, Water and Environment Systems. Energy Convers. Manage. 2018, 159, 398–412. DOI: 10.1016/j.enconman.2017.12.016.
  • Xu, C.; Li, X.; Xu, G.; Xin, T.; Yang, Y.; Liu, W.; Wang, M. Energy, Exergy and Economic Analyses of a Novel Solar-Lignite Hybrid Power Generation Process Using Lignite Pre-Drying. Energy Convers. Manage. 2018, 170, 19–33. DOI: 10.1016/j.enconman.2018.05.078.
  • Vishal Sardeshpande Benchmarking and Energy Efficiency of Glass Furnaces, Ph.D. Thesis, Indian Institute of Technology, Mumbai, India, 2007.
  • Haghi, A. K. Heat & Mass Transfer in Textiles; 2nd ed. Montreal, Canada, 2011. DOI: 10.1007/s00421-009-1253-9.
  • Cengel, Y. A.; Boles, M. Thermodynamics an Engineering Approach; 9th ed. McGraw Hill: Boston, 2019.
  • Patel, Sk.; Bade, M. H. Energy Analysis and Heat Recovery Opportunities in Spray Dryers Applied for Effluent Management. Energy Convers. Manage. 2019, 186, 597–609. DOI: doi.org/10.1016/j.enconman.2019.02.065. DOI: 10.1016/j.enconman.2019.02.065.
  • Holman, J. P. Heat Transfer; 10th ed. Mc Grill Hill Education: New York, 2018.
  • Cay, A.; Tarakcioglu, I.; Hepbasli, A. A Study on the Exergetic Analysis of Continuous Textile Dryers. IJEX 2009, 6, 422–439. DOI: 10.1504/IJEX.2009.025348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.