810
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Storage stability of powdered dairy ingredients: a review

, , & ORCID Icon
Pages 1529-1553 | Received 01 Feb 2021, Accepted 28 Mar 2021, Published online: 14 Apr 2021

References

  • Meste, M. L.; Champion, D.; Roudaut, G.; Blond, G.; Simatos, D. Glass Transition and Food Technology: A Critical Appraisal. J. Food Sci. 2002, 67, 2444–2458. DOI: 10.1111/j.1365-2621.2002.tb08758.x.
  • Haque, M. A.; Timilsena, Y. P.; Adhikari, B. Spray Drying. In Drying Technologies for Foods: Fundamentals & Applications; Nema, P.; Kaur, B. P.; Mujumdar, A. S.; Eds., Taylor & Francis, 2015; pp 79–106.
  • Wang, B.; Timilsena, Y. P.; Blanch, E.; Adhikari, B. Characteristics of Bovine Lactoferrin Powders Produced through Spray and Freeze Drying Processes. Int. J. Biol. Macromol. 2017, 95, 985–994. DOI:/10.1016/j.ijbiomac.2016.10.087. DOI: 10.1016/j.ijbiomac.2016.10.087.
  • Miao, S.; Roos, Y. H. Isothermal Study of Nonenzymatic Browning Kinetics in Spray-Dried and Freeze-Dried Systems at Different Relative Vapor Pressure Environments. Innov. Food Sci. Emerg. Technol. 2006, 7, 182–194. DOI: 10.1016/j.ifset.2005.11.001.
  • Deeth, H.; Hartanto, J. Chemistry of Milk—Role of Constituents in Evaporation and Drying. Dairy Powders Concentr. Prod.; Tamine, A. Y. Ed., 2009, 1–27.
  • Fenaille, F.; Campos-Giménez, E.; Guy, P. A.; Schmitt, C.; Morgan, F. Monitoring of Beta-Lactoglobulin Dry-State Glycation Using Various Analytical Techniques. Anal. Biochem. 2003, 320, 144–148. DOI: 10.1016/s0003-2697(03)00357-9.
  • Haque, M. K.; Roos, Y. Water Plasticization and Crystallization of Lactose in Spray‐Dried Lactose/Protein Mixtures. J. Food Sci. 2004, 69, FEP23–FEP29. DOI: 10.1111/j.1365-2621.2004.tb17863.
  • Schuck, P. Understanding the Factors Affecting Spray-Dried Dairy Powder Properties and Behavior. In Dairy-Derived Ingredients; Corredig, M.; Ed., Elsevier: United States, 2009; pp. 24–50.
  • U.D.E. Council. Reference Manual for US Milk Powders. Rev. US Dairy Export Council: Arlington, VA, 2017.
  • U.D.E. Council. Reference Manual for US Whey and Lactose Products; US Dairy Export Council: Arlington, VA, 2006.
  • Sawale, P. Casein and Caseinate: methods of Manufacture. Encycl. Food Health 2016, 1, 676–682.
  • Das, A.; Seth, R. Studies on Quality Attributes of Skimmed Colostrum Powder. Int. J. Chem. Stud. 2017, 5, 17–20.
  • Smith, K. Dried Dairy Ingredients; Wisconsin Center for Dairy Research, 2017.
  • Fitzpatrick, J.; Iqbal, T.; Delaney, C.; Twomey, T.; Keogh, M. Effect of Powder Properties and Storage Conditions on the Flowability of Milk Powders with Different Fat Contents. J. Food Eng. 2004, 64, 435–444. DOI: 10.1016/j.jfoodeng.2003.11.011.
  • Su, M.-Y.; Broadhurst, M.; Liu, C.-P.; Gathercole, J.; Cheng, W.-L.; Qi, X.-Y.; Clerens, S.; Dyer, J.; Day, L.; Haigh, B. Comparative Analysis of Human Milk and Infant Formula Derived Peptides following in Vitro Digestion. Food Chem. 2017, 221, 1895–1903. DOI: 10.1016/j.foodchem.2016.10.041.
  • Sikand, V.; Tong, P.; Walker, J.; Wang, T.; Rodriguez-Saona, L. Short Communication: Effect of Storage Temperature on the Solubility of Milk Protein Concentrate 80 (MPC80) Treated with NaCl or KCl. J. Dairy Sci. 2016, 99, 1791–1795. DOI: 10.3168/jds.2015-10158.
  • Tunick, M. H.; Thomas-Gahring, A.; Van Hekken, D. L.; Iandola, S. K.; Singh, M.; Qi, P. X.; Ukuku, D. O.; Mukhopadhyay, S.; Onwulata, C. I.; Tomasula, P. M. Physical and Chemical Changes in Whey Protein Concentrate Stored at Elevated Temperature and Humidity. J. Dairy Sci. 2016, 99, 2372–2383. DOI: 10.3168/jds.2015-10256.
  • Aalaei, K. Processing and Storage Stability of Skim Milk Powder; Lund University: Spain, 2017.
  • Sørensen, I.; Neve, T.; Ottosen, N.; Larsen, L. B.; Dalsgaard, T. K.; Wiking, L. Storage Stability of Whole Milk Powder Produced from Raw Milk Reverse Osmosis Retentate. Dairy Sci. Technol. 2017, 96, 873–886. DOI: 10.1007/s13594-016-0309-y.
  • Verruck, S.; de Liz, G. R.; Dias, C. O.; Amboni, R. D. d. M. C.; Prudencio, E. S. Effect of Full-Fat Goat's Milk and Prebiotics Use on Bifidobacterium BB-12 Survival and on the Physical Properties of Spray-Dried Powders under Storage Conditions. Food Res. Int. 2019, 119, 643–652. DOI: 10.1016/j.foodres.2018.10.042.
  • Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Changes in Physicochemical and Surface Characteristics in Model Infant Milk Formula Powder (IMF) during storage. Dry. Technol. 2020, 1–11. DOI: 10.1080/07373937.2020.1755978.
  • Semeniuc, C.; Jimborean, M. A.; Socaci, S. A.; Laslo, C. Physico-Chemical Changes in Whole Milk Powder during Different Storage Conditions. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca. Agric. 2008, 65.
  • Pugliese, A.; Cabassi, G.; Chiavaro, E.; Paciulli, M.; Carini, E.; Mucchetti, G. Physical Characterization of Whole and Skim Dried Milk Powders. J. Food Sci. Technol. 2017, 54, 3433–3442. DOI: 10.1007/s13197-017-2795-1.
  • Masum, A.; Chandrapala, J.; Adhikari, B.; Huppertz, T.; Zisu, B. Effect of Lactose-to-Maltodextrin Ratio on Emulsion Stability and Physicochemical Properties of Spray-Dried Infant Milk Formula Powders. J. Food Eng. 2019, 254, 34–41. DOI: 10.1016/j.jfoodeng.2019.02.023.
  • Saxena, J.; Adhikari, B.; Brkljaca, R.; Huppertz, T.; Zisu, B.; Chandrapala, J. Effect of Lactose Pre-Crystallisation on the Physicochemical Properties during Storage of Infant Formula Containing Hydrolysed Whey Protein. Int. Dairy J. 2020, 110, 104800. DOI: 10.1016/j.idairyj.2020.104800.
  • Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Effect of Storage Conditions on Physicochemical and Microstructural Properties of Skim and Whole Milk Powders. Powder Technol. 2020, 397, 394–403. DOI: 10.1016/j.powtec.2020.06.020.
  • Fournaise, T.; Burgain, J.; Perroud, C.; Scher, J.; Gaiani, C.; Petit, J. Impact of Formulation on Reconsitution and Flowability of Spray-Dried Milk Powders. Powder Technol. 2020, 372, 107–116. DOI: 10.1016/j.powtec.2020.05.085.
  • Francisquini, J. d A.; Martins, E.; Renhe, I. R. T.; Oliveira, L. F. C. d.; Stephani, R.; Perrone, Í. T.; Carvalho, A. F. d. Particle Size Distribution Applied to Milk Powder Rehydration. Quím. Nova 2020, 43, 226–230. DOI: 10.21577/0100-4042.20170466.
  • Meena, G. S.; Singh, A. K.; Arora, S.; Borad, S.; Sharma, R.; Gupta, V. K. Physico-Chemical, Functional and Rheological Properties of Milk Protein Concentrate 60 as Affected by Disodium Phosphate Addition, Diafiltration and Homogenization. J. Food Sci. Technol. 2017, 54, 1678–1688. DOI: 10.1007/s13197-017-2600-1.
  • Mimouni, A.; Deeth, H. C.; Whittaker, A. K.; Gidley, M. J.; Bhandari, B. R. Rehydration of High-Protein-Containing Dairy Powder: Slow-and Fast-Dissolving Components and Storage Effects. Dairy Sci. Technol. 2010, 90, 335–344. DOI: 10.1051/dst/2010002.
  • Aalaei, K.; Rayner, M.; Sjöholm, I. Storage Stability of Freeze-Dried, Spray-Dried and Drum-Dried Skim Milk Powders Evaluated by Available Lysine. LWT 2016, 73, 675–682. DOI: 10.1016/j.lwt.2016.07.011.
  • Aalaei, K.; Sjöholm, I.; Rayner, M.; Teixeira, C.; Tareke, E. Early and Advanced Stages of Maillard Reaction in Infant Formulas: Analysis of Available Lysine and Carboxymethyl-Lysine. PloS One 2019, 14, e0220138. DOI: 10.1371/journal.pone.0220138.
  • Beatty, N. F. Effects of Thermosonication on Microbial Population Reduction and Solubillity Index in Skim Milk Powder. Theses Master of Science, Utah States University, 2016.
  • Beatty, N. F.; Walsh, M. K. Influence of Thermosonication on Geobacillus stearothermophilus Inactivation in Skim Milk. Int. Dairy J. 2016, 61, 10–17. DOI: 10.1016/j.idairyj.2016.03.011.
  • Al Mahdi, R.; Nasirpour, A.; Banon, S.; Scher, J.; Desobry, S. Morphological and Mechanical Properties of Dried Skimmed Milk and Wheat Flour Mixtures during Storage. Powder Technol. 2006, 163, 145–151. [Database] DOI: 10.1016/j.powtec.2006.01.012.
  • Fitzpatrick, J.; Barry, K.; Cerqueira, P.; Iqbal, T.; O’neill, J.; Roos, Y. Effect of Composition and Storage Conditions on the Flowability of Dairy Powders. Int. Dairy J. 2007, 17, 383–392. DOI: 10.1016/j.idairyj.2006.04.010.
  • Masum, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Effect of Storage Conditions on the Physicochemical Properties of Infant Milk Formula Powders Containing Different Lactose-to-Maltodextrin Ratios. Food Chem. 2020, 319, 126591. DOI: 10.1016/j.foodchem.2020.126591.
  • Tamime, A. Y. Dairy Powders and Concentrated Products; John Wiley & Sons, 2009.
  • Ostrowska-Ligęza, E.; Jakubczyk, E.; Górska, A.; Wirkowska, M.; Bryś, J. The Use of Moisture Sorption Isotherms and Glass Transition Temperature to Assess the Stability of Powdered Baby Formulas. J. Therm. Anal. Calorim. 2014, 118, 911–918. DOI: 10.1007/s10973-014-3846-8.
  • Gillani, Z. Effect of Different Processing Techniques on Buffalo Whey Protein; University of Agriculture: Faisalabad, 2015.
  • Rodrigues, L.; Paiva, G.; Lisboa, H. M.; Pasquali, M.; Gusmão, R.; Duarte, M. E.; Cavalcanti-Mata, M. E.; Abrantes, T. Impact of Spray Drying Parameters on Lactose-Free Milk Powder Properties and Composition. J. Agric. Stud. 2020, 8, 31–46. DOI: 10.5296/jas.v8i3.15886.
  • Tan, L. W.; Ibrahim, M. N.; Kamil, R.; Taip, F. S. Empirical Modeling for Spray Drying Process of Sticky and Non-Sticky Products. Procedia Food Sci. 2011, 1, 690–697. DOI: 10.1016/j.profoo.2011.09.104.
  • Toutounji, M. R.; Butardo, V. M.; Zou, W.; Farahnaky, A.; Pallas, L.; Oli, P.; Blanchard, C. L. A High-Throughput in Vitro Assay for Screening Rice Starch Digestibility. Foods 2019, 8, 601. DOI: 10.3390/foods8120601.
  • Bhandari, B. R.; Patel, K. C.; Chen, X. D. Spray Drying of Food Materials-Process and Product Characteristics. Drying Technol. Food Process. 2008, 4, 113–157.
  • Sithole, R.; McDaniel, M.; Goddik, L. M. Rate of Maillard Browning in Sweet Whey Powder. J. Dairy Sci. 2005, 88, 1636–1645. DOI: 10.3168/jds.S0022-0302(05)72835-6.
  • Davis, B.; Siddique, A.; Park, Y. Effects of Different Storage Time and Temperature on Physicochemical Properties and Fatty Acid Profiles of Commercial Powder Goat Milk Products. J. Adv. Dairy Res. 2017, 5, 1–7. DOI: 10.4172/2329-888X.1000193.
  • Masum, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Influence of Drying Temperatures and Storage Parameters on the Physicochemical Properties of Spray-Dried Infant Milk Formula Powders. Int. Dairy J. 2020, 105, 104696. DOI: 10.1016/j.idairyj.2020.104696.
  • Semeniuc, C. A.; Guş, C.; Rotar, A. M.; Socaci, S. A.; Suharoschi, R.; Laslo, C. Effect of Storage Time on the Oxidative Status of Infant Formula. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2009, 66.
  • Tehrany, E. A.; Sonneveld, K.7Packaging and the Shelf Life of Milk Powders: A Practical Guild. In Food Packaging and Shelf Life; CRP Press: London, 2010; p 127.
  • Gopirajah, R.; Anandharamakrishnan, C. Packaging of Dried Dairy Products. In Handbook of Drying for Dairy Products. 2017; p 229–248.
  • Shakeel‐Ur‐Rehman, Farkye, N. Y.; Schaffner, A. A. The Effect of Multiwall Kraft Paper or Plastic Bags on Physico‐Chemical Changes in Milk Powder during Storage at High Temperature and Humidity. Int. J. Dairy Technol. 2003, 56, 12–16. DOI: 10.1046/j.1471-0307.2003.00057.x.
  • Lee, T.-A.; Ho, J.-H.; Khoo, S. K.; Chow, C.-F. Comprehensive Stability Evaluation of Iron-Fortified Milk Powder. FSTR. 2012, 18, 419–428. DOI: 10.3136/fstr.18.419.
  • Yu, H.; Zheng, Y.; Li, Y. Shelf Life and Storage Stability of Spray-Dried Bovine Colostrum Powders under Different Storage Conditions. J. Food Sci Technol. 2015, 52, 944–951. DOI: 10.1007/s13197-013-1046-3.
  • El, S. N.; Karakaya, S.; Simsek, S.; Dupont, D.; Menfaatli, E.; Eker, A. T. In Vitro Digestibility of Goat Milk and Kefir with a New Standardised Static Digestion Method (INFOGEST Cost Action) and Bioactivities of the Resultant Peptides. Food Funct. 2015, 6, 2322–2330.
  • Novaes, S. S. C.; Dantas, F. B. H.; Alvim, I. D.; de Oliveira Miguel, A. M. R.; Dantas, S. T.; Alves, R. M. V. Stability of Omega-3 Enriched Milk Powder in Different Commercial Packages Stored under Accelerated Conditions of Temperature and Relative Humidity. Int. Dairy J. 2019, 88, 1–9. DOI: 10.1016/j.idairyj.2018.07.013.
  • Ho, T. M.; Chan, S.; Yago, A. J.; Shravya, R.; Bhandari, B. R.; Bansal, N. Changes in Physicochemical Properties of Spray-Dried Camel Milk Powder over Accelerated Storage. Food Chem. 2019, 295, 224–233. DOI: 10.1016/j.foodchem.2019.05.122.
  • Rathour, A. K.; Rathore, V.; Mehta, B. M.; Patel, S. M.; Chauhan, A.; Aparnathi, K. Standardization and Storage Study of Whey Protein Concentrate (WPC‐70) Prepared from Buffalo Milk Using Ultrafiltration Membrane Technology. J. Food Process. Preserv. 2017, 41, e12882. DOI: 10.1111/jfpp.12882.
  • Phupoksakul, T.; Leuangsukrerk, M.; Somwangthanaroj, A.; Tananuwong, K.; Janjarasskul, T. Storage Stability of Packaged Baby Formula in Poly(Lactide)-Whey Protein Isolate Laminated Pouch. J. Sci. Food Agric. 2017, 97, 3365–3373. DOI: 10.1002/jsfa.8187.
  • Jena, S.; Das, H. Shelf Life Prediction of Aluminum Foil Laminated Polyethylene Packed Vacuum Dried Coconut Milk Powder. J. Food Eng. 2012, 108, 135–142. DOI: 10.1016/j.jfoodeng.2011.06.036.
  • Koç, B.; Yilmazer, M. S.; Balkır, P.; Ertekin, F. K. Moisture Sorption Isotherms and Storage Stability of Spray-Dried Yogurt Powder. Dry. Technol. 2010, 28, 816–822. DOI: 10.1080/07373937.2010.485083.
  • Kumar, P.; Mishra, H. Storage Stability of Mango Soy Fortified Yoghurt Powder in Two Different Packaging Materials: HDPP and ALP. J. Food Eng. 2004, 65, 569–576. DOI: 10.1080/07373937.2010.485083.
  • Phosanam, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Changes in Physicochemical and Surface Characteristics in Milk Protein Powders during Storage. Dry. Technol. 2020, 1–15. DOI: 10.1080/07373937.2020.1824189.
  • Shimamura, T.; Ukeda, H. Maillard Reaction in Milk—Effect of Heat Treatment. In Milk Protein; InTechOpen Science, 2012; pp 147–158.
  • Le, T. T.; Holland, J. W.; Bhandari, B.; Alewood, P. F.; Deeth, H. C. Direct Evidence for the Role of Maillard Reaction Products in Protein Cross-Linking in Milk Powder during Storage. Int. Dairy J. 2013, 31, 83–91. DOI: 10.1016/j.idairyj.2013.02.013.
  • Van Renterghem, R.; De Block, J. Furosine in Consumption Milk and Milk Powders. Int. Dairy J. 1996, 6, 371–382. DOI: 10.1016/0958-6946(95)00060-7.
  • Ferrer, E.; Alegría, A.; Farré, R.; Clemente, G.; Calvo, C. Fluorescence, Browning Index, and Color in Infant Formulas during Storage. J. Agric. Food Chem. 2005, 53, 4911–4917. DOI: 10.1021/jf0403585.
  • Thomsen, M. K.; Lauridsen, L.; Skibsted, L. H.; Risbo, J. Temperature Effect on Lactose Crystallization, Maillard Reactions, and Lipid Oxidation in Whole Milk Powder. J. Agric. Food Chem. 2005, 53, 7082–7090. DOI: 10.1021/jf050862p.
  • Van Boekel, M. Effect of Heating on Maillard Reactions in Milk. Food Chem. 1998, 62, 403–414. DOI: 10.1016/S0308-8146(98)00075-2.
  • Nasser, S.; Moreau, A.; Jeantet, R.; Hédoux, A.; Delaplace, G. Influence of Storage Conditions on the Functional Properties of Micellar Casein Powder. Food Bioprod. Process 2017, 106, 181–192. DOI: 10.1016/j.fbp.2017.09.004.
  • Nasser, S.; De Sa Peixoto, P.; Moreau, A.; Croguennec, T.; Bray, F.; Rolando, C.; Tessier, F. J.; Hédoux, A.; Delaplace, G. Storage of Micellar Casein Powders with and without Lactose: Consequences on Color, Solubility, and Chemical Modifications. J. Agric. Food Chem. 2018, 66, 10274–10282. DOI: 10.1021/acs.jafc.7b06147.
  • Thomas, M. E.; Scher, J.; Desobry-Banon, S.; Desobry, S. Milk Powders Ageing: Effect on Physical and Functional Properties. Crit. Rev. Food Sci. Nutr. 2004, 44, 297–322. DOI: 10.1080/10408690490464041.
  • Guyomarc’h, F.; Warin, F.; Muir, D. D.; Leaver, J. Lactosylation of Milk Proteins during the Manufacture and Storage of Skim Milk Powders. Int. Dairy J. 2000, 10, 863–872. DOI: 10.1016/S0958-6946(01)00020-6.
  • Li, R.; Lin, D.; Roos, Y. H.; Miao, S. Glass Transition, Structural Relaxation and Stability of Spray-Dried Amorphous Food Solids: A Review. Dry. Technol. 2019, 37, 287–300. DOI: 10.1080/07373937.2018.1459680.
  • Vignolles, M.-L.; Lopez, C.; Le Floch-Fouéré, C.; Ehrhardt, J.-J.; Méjean, S.; Jeantet, R.; Schuck, P. Fat Supramolecular Structure in Fat-Filled Dairy Powders: A Tool to Adjust Spray-Drying Temperatures. Dairy Sci. Technol. 2010, 90, 287–300. DOI: 10.1051/dst/2009057.
  • Vignolles, M.-L.; Jeantet, R.; Lopez, C.; Schuck, P. Free Fat, Surface Fat and Dairy Powders: Interactions between Process and Product. A Review. Lait 2007, 87, 187–236. DOI: 10.1051/lait:2007010.
  • Zafar, U.; Vivacqua, V.; Calvert, G.; Ghadiri, M.; Cleaver, J. S. A Review of Bulk Powder Caking. Powder Tech. 2017, 313, 389–401. DOI: 10.1016/j.powtec.2017.02.024.
  • Timilsena, Y. P.; Adhikari, R.; Barrow, C. J.; Adhikari, B. Microencapsulation of Chia Seed Oil Using Chia Seed Protein Isolate - Chia Seed Gum Complex Coacervates. Int. J. Biol. Macromol. 2016, 91, 347–357. DOI: 10.1016/j.ijbiomac.2016.05.058.
  • Okénová, E.; Krejči, J.; Hrabe, J.; Vicha, R. Oxidative Changes of Milk Fat in Dry Milk Stored under Various Conditions. Ecol. Chem. Eng. 2010, 17, 119–128.
  • Li, Y.; Zhang, L.; Wang, W.; Han, X. Differences in Particle Characteristics and Oxidized Flavor as Affected by Heat-Related Processes of Milk Powder. J. Dairy Sci. 2013, 96, 4784–4793. DOI: 10.3168/jds.2012-5799.
  • Lloyd, M.; Drake, M.; Gerard, P. Flavor Variability and Flavor Stability of US‐Produced Whole Milk Powder. J. Food Sci. 2009, 74, S334–S343. DOI: 10.1111/j.1750-3841.2009.01299.x.
  • Li, Y.; Wang, W.; Guo, L.; Shao, Z.; Xu, X. Comparative Study on the Characteristics and Oxidation Stability of Commercial Milk Powder during Storage. J. Dairy Sci. 2019, 102, 8785–8797. DOI: 10.3168/jds.2018-16089.
  • Whetstine, M. C.; Croissant, A.; Drake, M. Characterization of Dried Whey Protein Concentrate and Isolate Flavor. J. Dairy Sci 2005, 88, 3826–3839. DOI: 10.3168/jds.S0022-0302(05)73068-X.
  • Wright, J. M.; Carunchia Whetstine, M. E.; Miracle, R. E.; Drake, M. Characterization of a Cabbage off‐Flavor in Whey Protein Isolate. J. Food Sci 2006, 71, C86–C90. DOI: 10.1111/j.1365-2621.2006.tb08887.x.
  • Russell, T.; Drake, M.; Gerard, P. Sensory Properties of Whey and Soy Proteins. J. Food Sci. 2006, 71, S447–S455. DOI: 10.1111/j.1750-3841.2006.00055.x.
  • Mahajan, S.; Goddik, L.; Qian, M. Aroma Compounds in Sweet Whey Powder. J. Dairy Sci. 2004, 87, 4057–4063. DOI: 10.3168/jds.S0022-0302(04)73547-X.
  • Sithole, R.; McDaniel, M. R.; Goddik, L. M. Physicochemical, Microbiological, Aroma, and Flavor Profile of Selected Commercial Sweet Whey Powders. J. Food Sci. 2006, 71, C157–C163. DOI: 10.1111/j.1365-2621.2006.tb15611.x.
  • Wright, B.; Zevchak, S.; Wright, J. M.; Drake, M. The Impact of Agglomeration and Storage on Flavor and Flavor Stability of Whey Protein Concentrate 80% and whey protein isolate. J. Food Sci. 2009, 74, S17–S29. DOI: 10.1111/j.1750-3841.2008.00975.x.
  • Jia, H.-x.; Chen, W.-L.; Qi, X.-Y.; Su, M.-Y. The Stability of Milk-Based Infant Formulas during Accelerated Storage. CYTA-J. Food 2019, 17, 96–104. DOI: 10.1080/19476337.2018.1561519.
  • Rodríguez-Alcalá, L. M.; García-Martínez, M. C.; Cachón, F.; Marmesat, S.; Alonso, L.; Márquez-Ruiz, G.; Fontecha, J. Changes in the Lipid Composition of Powdered Infant Formulas during Long-Term Storage. J. Agric. Food Chem. 2007, 55, 6533–6538. DOI: 10.1021/jf0708591.
  • Rodríguez-Alcalá, L. M.; Fontecha, J. Hot Topic: Fatty Acid and Conjugated Linoleic Acid (CLA) Isomer Composition of Commercial CLA-Fortified Dairy Products: Evaluation after Processing and Storage. J. Dairy Sci. 2007, 90, 2083–2090. DOI: 10.3168/jds.2006-693.
  • Scaloni, A.; Perillo, V.; Franco, P.; Fedele, E.; Froio, R.; Ferrara, L.; Bergamo, P. Characterization of Heat-Induced Lactosylation Products in Caseins by Immunoenzymatic and Mass Spectrometric Methodologies. Biochim. Biophys. Acta Proteins Proteom. 2002, 1598, 30–39. DOI: 10.1016/S0167-4838(02)00290-X.
  • Romeu-Nadal, M.; Chavez-Servin, J.; Castellote, A.; Rivero, M.; Lopez-Sabater, M. Oxidation Stability of the Lipid Fraction in Milk Powder Formulas. Food Chem. 2007, 100, 756–763. DOI: 10.1016/j.foodchem.2005.10.037.
  • Lai, P.; Paterson, A. Mathematical Approach to Lipid Oxidation of Goat Infant Formula Powder. Int. Dairy J. 2020, 109, 104747. DOI: 10.1016/j.idairyj.2020.104747.
  • Turner, J. A.; Linforth, R. S.; Taylor, A. J. Real-Time Monitoring of Thermal Flavor Generation in Skim Milk Powder Using Atmospheric Pressure Chemical Ionization Mass Spectrometry. J. Agric. Food Chem. 2002, 50, 5400–5405. DOI: 10.1021/jf020381v.
  • Angulo, A.; Romera, J.; Ramirez, M.; Gil, A. Effects of Storage Conditions on Lipid Oxidation in Infant Formulas Based on Several Protein Sources. J. Am. Oil Chem. Soc. 1998, 75, 1603–1607. DOI: 10.1007/s11746-998-0100-1.
  • Nawar, W.; Kim, S.; Li, Y.; Vajdi, M. Measurement of Oxidative Interactions of Cholesterol. J. Am. Oil Chem. Soc. 1991, 68, 496–498. DOI: 10.1007/BF02663820.
  • Kanazawa, K.; Ashida, H.; Natake, M. Autoxidizing Process Interaction of Linoleic Acid with Casein. J. Food Sci. 1987, 52, 475–479. DOI: 10.1111/j.1365-2621.1987.tb06642.x.
  • Huppertz, T.; Gazi, I. Lactose in Dairy Ingredients: Effect on Processing and Storage Stability. J. Dairy Sci. 2016, 99, 6842–6851. DOI: 10.3168/jds.2015-10033.
  • Hellwig, M. The Chemistry of Protein Oxidation in Food. Angew. Chem. Int. Ed. Engl. 2019, 58, 16742–16763. DOI: 10.1002/anie.201814144.
  • Choe, E.; Min, D. B. Chemistry and Reactions of Reactive Oxygen Species in Foods. Crit. Rev. Food Sci. Nutr. 2006, 46, 1–22. DOI: 10.1111/j.1365-2621.2005.tb08329.x.
  • Davies, M. J. Protein Oxidation and Peroxidation. Biochem. J. 2016, 473, 805–825. DOI: 10.1042/BJ20151227.
  • Hawkins, C. L.; Davies, M. J. Generation and Propagation of Radical Reactions on Proteins. Biochim. Biophys. Acta 2001, 1504, 196–219. DOI: 10.1016/S0005-2728(00)00252-8.
  • Hellwig, M. Analysis of Protein Oxidation in Food and Feed Products. Agric. Food Chem. 2020. DOI: 10.1021/acs.jafc.0c00711.
  • Hellwig, M.; Löbmann, K.; Orywol, T. Peptide Backbone Cleavage by α-Amidation Is Enhanced at Methionine Residues. J. Pept. Sci. 2015, 21, 17–23. DOI: 10.1002/psc.2713.
  • Schöneich, C. Thiyl Radicals and Induction of Protein Degradation. Free Radic. Res. 2016, 50, 143–149. DOI: 10.3109/10715762.2015.1077385.
  • Scheidegger, D.; Pecora, R.; Radici, P.; Kivatinitz, S. Protein Oxidative Changes in Whole and Skim Milk after Ultraviolet or Fluorescent Light Exposure. J. Dairy Sci. 2010, 93, 5101–5109. DOI: 10.3168/jds.2010-3513.
  • Dalsgaard, T. K.; Otzen, D.; Nielsen, J. H.; Larsen, L. B. Changes in Structures of Milk Proteins upon Photo-Oxidation. J. Agric. Food Chem. 2007, 55, 10968–10976. DOI: 10.1021/jf071948g.
  • Scheidegger, D.; Radici, P. M.; Vergara-Roig, V. A.; Bosio, N. S.; Pesce, S. F.; Pecora, R. P.; Romano, J. C.; Kivatinitz, S. C. Evaluation of Milk Powder Quality by Protein Oxidative Modifications. J. Dairy Sci. 2013, 96, 3414–3423. DOI: 10.3168/jds.2012-5774.
  • Zrekah, G.; Aldiab, D.; Abboud, A. Determination of Protein and Fat Oxidation Levels in Imported Infant Formula Available in Syria. Int. J. Pharm. Pharm. Sci. 2015, 8, 169–172. DOI: 10.1109/5.771073.
  • Jensen, B. M.; Sørensen, J.; Mortensen, G.; Dalsgaard, T. K. Oxidation of Whey Concentrates during Long-Term Storage. Milchwissenschaft 2012, 67, 195–198.
  • Israel, O. O.; Yahya, O. O. Spectrophotometric Measurement of Available Lysine and Protein Carbonyls in Commercial Infant Formulas and Milk Products. J. Food Technol. 2016, 14, 5. DOI: 10.36478/jftech.2016.9.13.
  • Paterson, A.; Brooks, G.; Bronlund, J.; Foster, K. Development of Stickiness in Amorphous Lactose at Constant T − Tg Levels. Int. Dairy J. 2005, 15, 513–519. DOI: 10.1016/j.idairyj.2004.08.012.
  • Clark, Z.; Paterson, A.; Joe, R.; Mcleod, J. Amorphous Lactose Crystallisation Kinetics. Int. Dairy J. 2016, 56, 22–28. DOI: 10.1016/j.idairyj.2015.12.012.
  • Rao, Q.; Labuza, T. P. Effect of Moisture Content on Selected Physicochemical Properties of Two Commercial Hen Egg White Powders. Food Chem. 2012, 132, 373–384. DOI: 10.1016/j.foodchem.2011.10.107.
  • Tham, T. W. Y.; Yeoh, A. T. H.; Zhou, W. Characterisation of Aged Infant Formulas and Physicochemical Changes. Food Chem. 2017, 219, 117–125. DOI: 10.1016/j.foodchem.2016.09.107.
  • Hogan, S.; O'Callaghan, D. Influence of Milk Proteins on the Development of Lactose-Induced Stickiness in Dairy Powders. Int. Dairy J. 2010, 20, 212–221. DOI: 10.1016/j.idairyj.2009.11.002.
  • Roos, Y. H. Importance of Glass Transition and Water Activity to Spray Drying and Stability of Dairy Powders. Lait 2002, 82, 475–484. DOI: 10.1051/lait:2002025.
  • Fitzpatrick, J.; Hodnett, M.; Twomey, M.; Cerqueira, P.; O'flynn, J.; Roos, Y. Glass Transition and the Flowability and Caking of Powders Containing Amorphous Lactose. Powder Technol. 2007, 178, 119–128. DOI: 10.1016/j.powtec.2007.04.017.
  • Schuck, P.; Blanchard, E.; Dolivet, A.; Méjean, S.; Onillon, E.; Jeantet, R. Water Activity and Glass Transition in Dairy Ingredients. Lait 2005, 85, 295–304. DOI: 10.1051/lait:2005020.
  • Shrestha, A. K.; Howes, T.; Adhikari, B. P.; Bhandari, B. R. Spray Drying of Skim Milk Mixed with Milk Permeate: Effect on Drying Behavior, Physicochemical Properties, and Storage Stability of Powder. Dry. Technol. 2008, 26, 239–247. DOI: 10.1080/07373930701831663.
  • Jouppila, K.; Roos, Y. Water Sorption and Time-Dependent Phenomena of Milk Powders. J. Dairy Sci. 1994, 77, 1798–1808. DOI: 10.3168/jds.S0022-0302(94)77121-6.
  • Saxena, J.; Adhikari, B.; Brkljaca, R.; Huppertz, T.; Chandrapala, J.; Zisu, B. Inter-Relationship between Lactose Crystallization and Surface Free Fat during Storage of Infant Formula. Food Chem. 2020, 322, 126636. DOI: 10.1016/j.foodchem.2020.126636.
  • Cheng, H.; Zhu, R.-G.; Erichsen, H.; Soerensen, J.; Petersen, M. A.; Skibsted, L. H. High Temperature Storage of Infant Formula Milk Powder for Prediction of Storage Stability at Ambient Conditions. Int. Dairy J. 2017, 73, 166–174. DOI: 10.1016/j.idairyj.2017.05.007.
  • Saxena, J.; Adhikari, B.; Brkljaca, R.; Huppertz, T.; Zisu, B.; Chandrapala, J. Influence of Lactose Pre-Crystallization on the Storage Stability of Infant Formula Powder Containing Lactose and Maltodextrin. Food Hydrocoll. 2021, 111, 106385. DOI: 10.1016/j.foodhyd.2020.106385.
  • Kelly, G. M.; O'Mahony, J. A.; Kelly, A. L.; O'Callaghan, D. J. Effect of Hydrolyzed Whey Protein on Surface Morphology, Water Sorption, and Glass Transition Temperature of a Model Infant Formula. J. Dairy Sci. 2016, 99, 6961–6972. DOI: 10.3168/jds.2015-10447.
  • Kalichevsky, M. T.; Blanshard, J. M.; Tokargzuk, P. F. Effect of Water Content and Sugars on the Glass Transition of Casein and Sodium Caseinate. Int. J. Food Sci. Technol. 2007, 28, 139–151. DOI: 10.1111/j.1365-2621.1993.tb01259.x.
  • Matveev, Y. I.; Grinberg, V. Y.; Sochava, I.; Tolstoguzov, V. Glass Transition Temperature of Proteins. Calculation Based on the Additive Contribution Method and Experimental Data. Food Hydrocoll. 1997, 11, 125–133. DOI: 10.1016/S0268-005X(97)80020-3.
  • Zhou, P.; Liu, D.; Chen, X.; Chen, Y.; Labuza, T. P. Stability of Whey Protein Hydrolysate Powders: Effects of Relative Humidity and Temperature. Food Chem. 2014, 150, 457–462. DOI: 10.1016/j.foodchem.2013.11.027.
  • Shimamura, T.; Ukeda, H.Maillard Reaction in Milk—Effect of Heat Treatment. In Milk Protein; Water, L. H. Ed.; InTechOpen Science, Croatia, 2012; pp 147–158.
  • Hogan, S.; O’callaghan, D. Moisture Sorption and Stickiness Behaviour of Hydrolysed Whey Protein/Lactose Powders. Dairy Sci. Technol. 2013, 93, 505–521. DOI: 10.1007/s13594-013-0129-2.
  • Haque, M. K.; Roos, Y. Water Plasticization and Crystallization of Lactose in Spray‐Dried Lactose/Protein Mixtures. J. Food Sci. 2004, 69, FEB23–FEB29. DOI: 10.1111/j.1365-2621.2004.tb17863.x.
  • Mounsey, J. S.; Hogan, S. A.; Murray, B. A.; O'Callaghan, D. J. Effects of Hydrolysis on Solid-State Relaxation and Stickiness Behavior of Sodium Caseinate-Lactose Powders. J. Dairy Sci. 2012, 95, 2270–2281. DOI: 10.3168/jds.2011-4674.
  • Nasirpour, A.; Scher, J.; Linder, M.; Desobry, S. Modeling of Lactose Crystallization and Color Changes in Model Infant Foods. J. Dairy Sci. 2006, 89, 2365–2373. DOI: 10.3168/jds.S0022-0302(06)72309-8.
  • Knudsen, J.; Antanuse, H.; Risbo, J.; Skibsted, L. Induction Time and Kinetics of Crystallization of Amorphous Lactose, Infant Formula and Whole Milk Powder as Studied by Isothermal Differential Scanning Calorimetry. Milchwissenschaft 2002, 9, 543–546.
  • Li, K.; Woo, M. W.; Selomulya, C. Effects of Composition and Relative Humidity on the Functional and Storage Properties of Spray Dried Model Milk Emulsions. J. Food Eng. 2016, 169, 196–204. DOI: 10.1016/j.jfoodeng.2015.09.002.
  • Anema, S.; Pinder, D.; Hunter, R.; Hemar, Y. Effects of Storage Temperature on the Solubility of Milk Protein Concentrate (MPC85). Food Hydrocoll. 2006, 20, 386–393. DOI: 10.1016/j.foodhyd.2005.03.015.
  • Fyfe, K. N.; Kravchuk, O.; Le, T.; Deeth, H. C.; Nguyen, A. V.; Bhandari, B. Storage Induced Changes to High Protein Powders: Influence on Surface Properties and Solubility. J. Sci. Food Agric. 2011, 91, 2566–2575. DOI: 10.1002/jsfa.4461.
  • Gaiani, C.; Scher, J.; Ehrhardt, J. J.; Linder, M.; Schuck, P.; Desobry, S.; Banon, S. Relationships between Dairy Powder Surface Composition and Wetting Properties during Storage: Importance of Residual Lipids. J. Agric. Food Chem. 2007, 55, 6561–6567. DOI: 10.1021/jf070364b.
  • Masum, A.; Chandrapala, J.; Huppertz, T.; Adhikari, B.; Zisu, B. Production and Characterization of Infant Milk Formula Powders: A Review. Dry. Technol. 2020, 1–21. DOI: 10.1080/07373937.2020.1767645.
  • Kosasih, L.; Bhandari, B.; Prakash, S.; Bansal, N.; Gaiani, C. Effect of Whole Milk Concentrate Carbonation on Functional, Physicochemical and Structural Properties of the Resultant Spray Dried Powder during Storage. J. Food Eng. 2016, 179, 68–77. DOI: 10.1016/j.jfoodeng.2016.02.005.
  • Yazdanpanah, N.; Langrish, T. A. Comparative Study of Deteriorative Changes in the Ageing of Milk Powder. J. Food Eng. 2013, 114, 14–21. DOI: 10.1016/j.jfoodeng.2012.07.026.
  • Kim, E. H.-J.; Chen, X. D.; Pearce, D. Surface Composition of Industrial Spray-Dried Milk Powders. 2. Effects of Spray Drying Conditions on the Surface Composition. J. Food Eng. 2009, 94, 169–181. [Database] DOI: 10.1016/j.jfoodeng.2008.10.020.
  • Fyfe, K.; Kravchuk, O.; Nguyen, A. V.; Deeth, H.; Bhandari, B. Influence of Dryer Type on Surface Characteristics of Milk Powders. Dry. Technol. 2011, 29, 758–769. DOI: 10.1080/07373937.2010.538481.
  • Fan, F.; Liu, M.; Shi, P.; Xu, X.; Lu, W.; Wang, Z.; Du, M. Protein Cross-Linking and the Maillard Reaction Decrease the Solubility of Milk Protein Concentrates. Food Sci. Nutr. 2018, 6, 1196–1203. DOI: 10.1002/fsn3.657.
  • Le, T. T.; Bhandari, B.; Deeth, H. C. Chemical and Physical Changes in Milk Protein Concentrate (MPC80) Powder during Storage. J. Agric. Food Chem. 2011, 59, 5465–5473. DOI: 10.1021/jf2003464.
  • Martinez-Alvarenga, M.; Martinez-Rodriguez, E.; Garcia-Amezquita, L.; Olivas, G.; Zamudio-Flores, P.; Acosta-Muniz, C.; Sepulveda, D. Effect of Maillard Reaction Conditions on the Degree of Glycation and Functional Properties of Whey Protein Isolate–Maltodextrin Conjugates. Food Hydrocoll. 2014, 38, 110–118. DOI: 10.1016/j.foodhyd.2013.11.006.
  • Al‐Saadi, J. M.; Easa, A. M.; Deeth, H. C. Effect of Lactose on Cross‐Linking of Milk Proteins during Heat Treatments. Int. J. Dairy Technol. 2013, 66, 1–6. DOI: 10.1111/j.1471-0307.2012.00878.x.
  • Norwood, E.-A.; Pezennec, S.; Burgain, J.; Briard-Bion, V.; Schuck, P.; Croguennec, T.; Jeantet, R.; Le Floch-Fouéré, C. Crucial Role of Remaining Lactose in Whey Protein Isolate Powders during Storage. J. Food Eng. 2017, 195, 206–216. DOI: 10.1016/j.jfoodeng.2016.10.010.
  • Carpin, M.; Bertelsen, H.; Bech, J.; Jeantet, R.; Risbo, J.; Schuck, P. Caking of Lactose: A Critical Review. Trends Food Sci. Technol. 2016, 53, 1–12. DOI: 10.1016/j.tifs.2016.04.002.
  • Hashemi, N.; Milani, E.; Mortezavi, S. A.; Yazdi, F. T. Sticky Point Temperature as a Suitable Method in Evaluation of Shelf Life of Food Powders. Bull. de la Soc. R. des Sci. de Liège 2017, 86, 7–12. DOI: 10.25518/0037-9565.6519.
  • Roos, Y. Solid and Liquid States of Lactose. In Advanced Dairy Chemistry Volume 3; McSweeney, P. L. H.; Fox, P. F.; Eds., Springer: New York, 2009; pp 17–33.
  • Roos, Y.; Karel, M. Phase Transitions of Mixtures of Amorphous Polysaccharides and Sugars. Biotechnol. Prog. 1991, 7, 49–53. DOI: 10.1021/bp00007a008.
  • Adhikari, B.; Howes, T.; Lecomte, D.; Bhandari, B. A Glass Transition Temperature Approach for the Prediction of the Surface Stickiness of a Drying Droplet during Spray Drying. Powder Technol. 2005, 149, 168–179. [Database] DOI: 10.1016/j.powtec.2004.11.007.
  • Palzer, S. In Influence of Supramolecular Structure and Storage Conditions on the Caking of Powders, In Fifth World Congress on Particle Technology, 2006.
  • Descamps, N.; Palzer, S. Modeling the Sintering of Water Soluble Amorphous Particles; Partec: Nürnberg, 2007.
  • Fitzpatrick, J.; O’Callaghan, E.; O’Flynn, J. Application of a Novel Cake Strength Tester for Investigating Caking of Skim Milk Powder. Food Bioprod. Process 2008, 86, 198–203. DOI: 10.1016/j.fbp.2007.10.009.
  • Fitzpatrick, J.; Descamps, N.; O'Meara, K.; Jones, C.; Walsh, D.; Spitere, M. Comparing the Caking Behaviours of Skim Milk Powder, Amorphous Maltodextrin and Crystalline Common Salt. Powder Technol. 2010, 204, 131–137. DOI: 10.1016/j.powtec.2010.07.029.
  • Palzer, S. The Relation between Material Properties and Supra-Molecular Structure of Water-Soluble Food Solids. Trends Food Sci. Technol. 2010, 21, 12–25. DOI: 10.1016/j.tifs.2009.08.005.
  • Murrieta-Pazos, I.; Gaiani, C.; Galet, L.; Cuq, B.; Desobry, S.; Scher, J. Comparative Study of Particle Structure Evolution during Water Sorption: Skim and Whole Milk Powders. Colloids Surf. B Biointerfaces 2011, 87, 1–10. DOI: 10.1016/j.colsurfb.2011.05.001.
  • Foster, K. D.; Bronlund, J. E.; Paterson, A. T. The Contribution of Milk Fat towards the Caking of Dairy Powders. Int. Dairy J. 2005, 15, 85–91. DOI: 10.1016/j.idairyj.2004.05.005.
  • Baldwin, A. J. Insolubility of Milk Powder Products—A minireview. Dairy Sci. Technol. 2010, 90, 169–179. DOI: 10.1051/dst/2009056.
  • Fang, Y.; Selomulya, C.; Chen, X. D. On Measurement of Food Powder Reconstitution Properties. Dry. Technol. 2007, 26, 3–14. DOI: 10.1080/07373930701780928.
  • Crowley, S.; Kelly, A.; Schuck, P.; Jeantet, R.; O’mahony, J. Rehydration and Solubility Characteristics of High-Protein Dairy Powders. In Advanced Dairy Chemistry; Springer: New York, 2016; pp 99–131.
  • McSweeney, P. L.; Fox, P. F. Advanced Dairy Chemistry: Volume 1A: Proteins: Basic Aspects. Springer Science & Business Media: United States, 2013.
  • Sharma, A.; Jana, A. H.; Chavan, R. S. Functionality of Milk Powders and Milk‐Based Powders for End Use Applications—A Review. Compr. Rev. Food Sci. Food Saf. 2012, 11, 518–528. DOI: 10.1111/j.1541-4337.2012.00199.x.
  • Schuck, P.; Jeantet, R.; Bhandari, B.; Chen, X. D.; Perrone, Í. T.; de Carvalho, A. F.; Fenelon, M.; Kelly, P. Recent Advances in Spray Drying Relevant to the Dairy Industry: A Comprehensive Critical Review. Dry. Technol. 2016, 34, 1773–1790. DOI: 10.1080/07373937.2016.1233114.
  • Mimouni, A.; Deeth, H.; Whittaker, A.; Gidley, M.; Bhandari, B. Investigation of the Microstructure of Milk Protein Concentrate Powders during Rehydration: Alterations during Storage. J. Dairy Sci. 2010, 93, 463–472. DOI: 10.3168/jds.2009-2369.
  • Murphy, E. G.; Regost, N. E.; Roos, Y. H.; Fenelon, M. A. Powder and Reconstituted Properties of Commercial Infant and Follow-On Formulas. Foods 2020, 9, 84. DOI: 10.3390/foods9010084.
  • Gazi, I.; Huppertz, T. Influence of Protein Content and Storage Conditions on the Solubility of Caseins and Whey Proteins in Milk Protein Concentrates. Int. Dairy J. 2015, 46, 22–30. DOI: 10.1016/j.idairyj.2014.09.009.
  • Gaiani, C.; Ehrhardt, J.; Scher, J.; Hardy, J.; Desobry, S.; Banon, S. Surface Composition of Dairy Powders Observed by X-Ray Photoelectron Spectroscopy and Effects on Their Rehydration Properties. Colloids Surf. B Biointerfaces 2006, 49, 71–78. DOI: 10.1016/j.colsurfb.2006.02.015.
  • Mimouni, A.; Deeth, H. C.; Whittaker, A. K.; Gidley, M. J.; Bhandari, B. R. Rehydration Process of Milk Protein Concentrate Powder Monitored by Static Light Scattering. Food Hydrocoll. 2009, 23, 1958–1965. DOI: 10.1016/j.foodhyd.2009.01.010.
  • Haque, E.; Bhandari, B. R.; Gidley, M. J.; Deeth, H. C.; Møller, S. M.; Whittaker, A. K. Protein Conformational Modifications and Kinetics of Water-Protein Interactions in Milk Protein Concentrate Powder upon Aging: Effect on Solubility. J. Agric. Food Chem. 2010, 58, 7748–7755. DOI: 10.1021/jf1007055.
  • Cao, J.; Wang, G.; Wu, S.; Zhang, W.; Liu, C.; Li, H.; Li, Y.; Zhang, L. Comparison of Nanofiltration and Evaporation Technologies on the Storage Stability of Milk Protein Concentrates. Dairy Sci. Technol. 2016, 96, 107–121. DOI: 10.1007/s13594-015-0244-3.
  • Havea, P. Protein Interactions in Milk Protein Concentrate Powders. Int. Dairy J. 2006, 16, 415–422. DOI: 10.1016/j.idairyj.2005.06.005.
  • Haque, E.; Bhandari, B. R.; Gidley, M. J.; Deeth, H. C.; Whittaker, A. K. Ageing-Induced Solubility Loss in Milk Protein Concentrate Powder: Effect of Protein Conformational Modifications and Interactions with Water. J. Sci. Food Agric. 2011, 91, 2576–2581. DOI: 10.1002/jsfa.4478.
  • Kher, A.; Udabage, P.; McKinnon, I.; McNaughton, D.; Augustin, M. A. FTIR Investigation of Spray-Dried Milk Protein Concentrate Powders. Vib. Spectrosc. 2007, 44, 375–381. DOI: 10.1016/j.vibspec.2007.03.006.
  • Jayasundera, M.; Adhikari, B.; Aldred, P.; Ghandi, A. Surface Modification of Spray Dried Food and Emulsion Powders with Surface-Active Proteins: A Review. J. Food Eng. 2009, 93, 266–277. DOI: 10.1016/j.jfoodeng.2009.01.036.
  • Babu, K. S.; Siliveru, K.; Amamcharla, J.; Vadlani, P. V.; Ambrose, R. K. Influence of Protein Content and Storage Temperature on the Particle Morphology and Flowability Characteristics of Milk Protein Concentrate Powders. J. Dairy Sci. . 2018, 101, 7013–7026. DOI: 10.3168/jds.2018-14405.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.