Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 14
271
Views
1
CrossRef citations to date
0
Altmetric
Articles

Parametric analysis of industrial spray dryer for performance enhancement applicable in effluent management

ORCID Icon &
Pages 2880-2903 | Received 21 Mar 2021, Accepted 28 Aug 2021, Published online: 20 Sep 2021

References

  • Patel, S. K. ; Bade, M. H. Energy Analysis and Heat Recovery Opportunities in Spray Dryers Applied for Effluent Management. Energy Convers. Manag. 2019, 186 , 597–609. DOI: 10.1016/j.enconman.2019.02.065.
  • Gauvin, W. H. ; Katta, S. Basic Concepts of Spray Dryer Design. AIChE J. 1976, 22 , 713–724. DOI: 10.1002/aic.690220413.
  • Baker, C. G. J. ; Mckenzie, K. A. Energy Consumption of Industrial Spray Dryers. Dry. Technol. 2005, 23 , 365–386. DOI: 10.1081/DRT-200047665.
  • Velic, D. ; Mate, B. ; Srecko, T. ; Mirela, P. Simulation, Calculation and Possibilities of Energy Saving in Spray Drying Process. Appl. Therm. Eng. 2003, 23 , 2119–2131.
  • Yildirim, N. ; Genc, S. Energy and Exergy Analysis of Milk Powder Production System. Energy Convers. Manag. 2017, 149 , 698–705. DOI: 10.1016/j.enconman.2017.01.064.
  • Walmsley, T. G. ; Walmsley, M. R. W. ; Atkins, M. J. ; Neale, J. R. ; Tarighaleslami, A. H. Thermo-Economic Optimisation of Industrial Milk Spray Dryer Exhaust to Inlet Air Heat Recovery. Energy 2015, 90 , 95–104. DOI: 10.1016/j.energy.2015.03.102.
  • Adhikari, B. ; Howes, T. ; Shrestha, A. K. ; Bhandari, B. R. Development of Stickiness of Whey Protein Isolate and Lactose Droplets during Convective Drying. Chem. Eng. Process. Process Intensif. 2007, 46 , 420–428. DOI: 10.1016/j.cep.2006.07.014.
  • Anandharamakrishnan, C. ; Rielly, C. D. ; Stapley, A. G. F. Effects of Process Variables on the Denaturation of Whey Proteins during Spray Drying. Dry. Technol. 2007, 25 , 799–807. DOI: 10.1080/07373930701370175.
  • Ramos, F. ; de, M. ; Ubbink, J. ; Silveira Júnior, V. ; Prata, A. S. Drying of Maltodextrin Solution in a Vacuum Spray Dryer. Chem. Eng. Res. Des. 2019, 146 , 78–86. DOI: 10.1016/j.cherd.2019.03.036.
  • Atkins, M. J. ; Walmsley, M. R. W. ; Neale, J. R. Integrating Heat Recovery from Milk Powder Spray Dryer Exhausts in the Dairy Industry. Appl. Therm. Eng. 2011, 31 , 2101–2106. DOI: 10.1016/j.applthermaleng.2011.03.006.
  • Qin, Y. ; Fu, H. ; Wang, J. ; Liu, M. ; Yan, J. Waste Heat and Water Recovery Characteristics of Heat Exchangers for Dryer Exhaust. Dry. Technol 2018, 36 , 709–722. DOI: 10.1080/07373937.2017.1351451.
  • Marinopoulou, A. ; Karageorgiou, V. ; Iordanidis, C. ; Dagklis, A. ; Zoumakis, N. ; Raphaelides, S. N. Parametric Analysis of the Spray Drying Process for the Production of Starch Molecular Inclusion Complexes with Fatty Acids. Dry. Technol. 2021, 39(5), 580–595. DOI: 10.1080/07373937.2019.1696817.
  • Sher, F. ; Kawai, A. ; Güleç, F. ; Sadiq, H. Sustainable Energy Saving Alternatives in Small Buildings. Sustain. Energy Technol. Assessment. 2019, 32 , 92–99. DOI: 10.1016/j.seta.2019.02.003.
  • Keshani, S. ; Daud, W. R. W. ; Woo, M. W. ; Talib, M. Z. M. ; Chuah, A. L. ; Russly, A. R. Artificial Neural Network Modeling of the Deposition Rate of Lactose Powder in Spray Dryers. Dry. Technol. 2012, 30 , 386–397. DOI: 10.1080/07373937.2011.638228.
  • Kockel, T. Heat Recovery from Spray Dryer Exhaust Air: An Example from an Infant Formula Factory Installation. Dry. Technol. 2019, 37 , 623–631. DOI: 10.1080/07373937.2019.1591741.
  • Sivill, L. ; Ahtila, P. ; Taimisto, M. Thermodynamic Simulation of Dryer Section Heat Recovery in Paper Machines. Appl. Therm. Eng. 2005, 25 , 1273–1292. DOI: 10.1016/j.applthermaleng.2004.09.002.
  • Razmi, R. ; Jubaer, H. ; Krempski-Smejda, M. ; Jaskulski, M. ; Xiao, J. ; Chen, X. D. ; Woo, M. W. Recent Initiatives in Effective Modeling of Spray Drying. Dry. Technol. 2021, 39 (11), 1614–1647. DOI: 10.1080/07373937.2021.1902344.
  • Krokida, M. K. ; Bisharat, G. I. Heat Recovery from Dryer Exhaust Air. Dry. Technol. 2004, 22 , 1661–1674. DOI: 10.1081/DRT-200025626.
  • Han, X. ; Liu, M. ; Yan, J. ; Karellas, S. ; Wang, J. ; Xiao, F. Thermodynamic Analysis of an Improved Flue Gas Pre-Dried Lignite-Fired Power System Integrated with Water Recovery and Drying Exhaust Gas Recirculation. Dry. Technol. 2020, 38 , 1971–1987. DOI: 10.1080/07373937.2019.1607871.
  • Söğüt, Z. ; Oktay, Z. ; Karakoç, H. Mathematical Modeling of Heat Recovery from a Rotary Kiln. Appl. Therm. Eng. 2010, 30 , 817–825. DOI: 10.1016/j.applthermaleng.2009.12.009.
  • Karamarković, V. ; Marašević, M. ; Karamarković, R. ; Karamarković, M. Recuperator for Waste Heat Recovery from Rotary Kilns. Appl. Therm. Eng. 2013, 54 , 470–480. DOI: 10.1016/j.applthermaleng.2013.02.027.
  • Ghasemkhani, H. ; Keyhani, A. ; Aghbashlo, M. ; Rafiee, S. ; Mujumdar, A. S. Improving Exergetic Performance Parameters of a Rotating-Tray Air Dryer via a Simple Heat Exchanger. Appl. Therm. Eng. 2016, 94 , 13–23. DOI: 10.1016/j.applthermaleng.2015.10.114.
  • Golman, B. ; Julklang, W. Simulation of Exhaust Gas Heat Recovery from a Spray Dryer. Appl. Therm. Eng. 2014, 73 , 899–913. DOI: 10.1016/j.applthermaleng.2014.08.045.
  • Ai, S. ; Wang, B. ; Li, X. ; Shi, W. Analysis of a Heat Recovery System of the Spray-Drying Process in a. Soy Protein Powder Plant. Appl. Therm. Eng. 2016, 103 , 1022–1030.
  • Arsenyeva, O. P. ; Čuček, L. ; Tovazhnyanskyy, L. L. ; Kapustenko, P. O. ; Savchenko, Y. A. ; Kusakov, S. K. ; Matsegora, O. I. Utilisation of Waste Heat from Exhaust Gases of Drying Process. Front. Chem. Sci. Eng. 2016, 10 , 131–138. DOI: 10.1007/s11705-016-1560-8.
  • Zohrabi, S. ; Seiiedlou, S. S. ; Aghbashlo, M. ; Scaar, H. ; Mellmann, J. Enhancing the Exergetic Performance of a Pilot-Scale Convective Dryer by Exhaust Air Recirculation. Dry. Technol. 2020, 38 , 518–533. DOI: 10.1080/07373937.2019.1587617.
  • Zohrabi, S. ; Aghbashlo, M. ; Seiiedlou, S. S. ; Scaar, H. ; Mellmann, J. Energy Saving in a Convective Dryer by Using Novel Real-Time Exergy-Based Control Schemes Adjusting Exhaust Air Recirculation. J. Clean. Prod. 2020, 257 , 120394. DOI: 10.1016/j.jclepro.2020.120394.
  • Atalay, H. ; Cankurtaran, E. Energy, Exergy, Exergoeconomic and Exergo-Environmental Analyses of a Large Scale Solar Dryer with PCM Energy Storage Medium. Energy 2021, 216 , 119221. DOI: 10.1016/j.energy.2020.119221.
  • Amid, S. ; Aghbashlo, M. ; Tabatabaei, M. ; Karimi, K. ; Nizami, A. S. ; Rehan, M. ; Hosseinzadeh-Bandbafha, H. ; Mojarab Soufiyan, M. ; Peng, W. ; Lam, S. S. Exergetic, Exergoeconomic, and Exergoenvironmental Aspects of an Industrial-Scale Molasses-Based Ethanol Production Plant. Energy Convers. Manag. 2021, 227 , 113637. DOI: 10.1016/j.enconman.2020.113637.
  • Motevali, A. ; Minaei, S. ; Khoshtagaza, M. H. Evaluation of Energy Consumption in Different Drying Methods. Energy Convers. Manag. 2011, 52 , 1192–1199. DOI: 10.1016/j.enconman.2010.09.014.
  • Wang, Z. ; Zhang, Y. ; Zhang, B. ; Yang, F. ; Yu, X. ; Zhao, B. ; Wei, Y. Analysis on Energy Consumption of Drying Process for Dried Chinese Noodles. Appl. Therm. Eng. 2017, 110 , 941–948. DOI: 10.1016/j.applthermaleng.2016.08.225.
  • Al-Mansour, H. E. ; Al-Busairi, B. H. ; Baker, C. G. J. Energy Consumption of a Pilot-Scale Spray Dryer. Dry. Technol. 2011, 29 , 1901–1910. DOI: 10.1080/07373937.2011.595563.
  • Woolley, E. ; Luo, Y. ; Simeone, A. Industrial Waste Heat Recovery: A Systematic Approach. Sustain. Energy Technol. Assess. 2018, 29 , 50–59. DOI: 10.1016/j.seta.2018.07.001.
  • Moradi, M. ; Ghorbani, B. ; Shirmohammadi, R. ; Mehrpooya, M. ; Hamedi, M. H. Developing of an Integrated Hybrid Power Generation System Combined with a Multi-Effect Desalination Unit. Sustain. Energy Technol. Assess. 2019, 32 , 71–82. DOI: 10.1016/j.seta.2019.02.002.
  • Han, X. ; Zhang, D. ; Yan, J. ; Zhao, S. ; Liu, J. Process Development of Flue Gas Desulphurization Wastewater Treatment in Coal-Fired Power Plants towards Zero Liquid Discharge: Energetic, Economic and Environmental Analyses. J. Clean. Prod. 2020, 261 , 121144. DOI: 10.1016/j.jclepro.2020.121144.
  • CPCB . Environmental Act and Rules for Water Pollution. https://cpcb.nic.in/water-pollution/ (accessed Sep 20, 2020).
  • Jokandan, M. J. ; Aghbashlo, M. ; Mohtasebi, S. S. Comprehensive Exergy Analysis of an Industrial-Scale Yogurt Production Plant. Energy 2015, 93 , 1832–1851. DOI: 10.1016/j.energy.2015.10.003.
  • Moffat, R. J. Describing the Uncertainties in Experimental Results. Exp. Therm. Fluid Sci. 1988, 1 , 3–17. DOI: 10.1016/0894-1777(88)90043-X.
  • Holman, J. P. Analysis of Experimental Data. In Experimental Methods for Engineers ; McGraw-Hill: Singapore, 2012; pp 60–83
  • Gungor, A. ; Erbay, Z. ; Hepbasli, A. Exergoeconomic Analyses of a Gas Engine Driven Heat Pump Drier and Food Drying Process. Appl. Energy 2011, 88 , 2677–2684. DOI: 10.1016/j.apenergy.2011.02.001.
  • Erbay, Z. ; Koca, N. Energetic, Exergetic and Exergoeconomic Analysis of Spray Drying Process during White Cheese Powder Production. Dry. Technol. 2012, 30 , 435–444. DOI: 10.1080/07373937.2011.647183.
  • Golman, B. ; Julklang, W. Analysis of Heat Recovery from a Spray Dryer by Recirculation of Exhaust Air. Energy Convers. Manag. 2014, 88 , 641–649. DOI: 10.1016/j.enconman.2014.09.012.
  • Fil, B. ; El; Garimella, S. Waste Heat Recovery in Commercial Gas-Fired Tumble Dryers. Energy 2021, 218 , 119407. DOI: 10.1016/j.energy.2020.119407.
  • Anderson, J. O. ; Elfgren, E. ; Westerlund, L. Improved Energy Efficiency in Juice Production through Waste Heat Recycling. Appl. Energy 2014, 130 , 757–763. DOI: 10.1016/j.apenergy.2014.01.092.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.