Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
180
Views
0
CrossRef citations to date
0
Altmetric
Articles

Study on drying characters of a thin cotton fabric under uneven radial heating by the hot air jet

, , , , &
Pages 3115-3127 | Received 13 Nov 2020, Accepted 04 Nov 2021, Published online: 14 Dec 2021

References

  • Besler, N.; Gloy, Y. S.; Gries, T. Analysis of the Heat Setting Process. IOP Conf. Ser. Mater. Sci. Eng. 2016, 141, 012018. DOI: 10.1088/1757-889X/141/1/012018.
  • Sousa, L. H. C.; Motta Lima, O. C.; Pereira, N. C. Analysis of Drying Kinetics and Moisture Distribution in Convective Textile Fabric Drying. Dry. Technol. 2006, 24, 485–497. DOI: 10.1080/07373930600611984.
  • Gluesenkamp, K. R.; Patel, V. K.; Momen, A. M. Efficiency Limits of Evaporative Fabric Drying Methods. Dry. Technol. 2020, 39, 104–124. DOI: 10.1080/07373937.2020.1839486.
  • Jangam, S. V.; Karthikeyan, M.; Mujumdar, A.-S. A. Critical Assessment of Industrial Coal Drying Technologies: Role of Energy, Emissions, Risk and Sustainability. Dry. Technol. 2011, 29, 395–407. DOI: 10.1080/07373937.2010.498070.
  • Zhang, W. P.; Yang, X. H.; Mujumdar, A. S.; Ju, H. Y.; Xiao, H. W. The Influence Mechanism and Control Strategy of Relative Humidity on Hot Air Drying of Fruits and Vegetables: A Review. Dry. Technol. 2021, 1–18. DOI: 10.1080/07373937.2021.1943669.
  • Palamanit, A.; Sugira, A. M.; Soponronnarit, S.; Prachayawarakorn, S.; Tungtrakul, P.; Kalkan, F.; Raghavan, V. Study on Quality Attributes and Drying Kinetics of Instant Parboiled Rice Fortified with Turmeric Using Hot Air and Microwave-Assisted Hot Air Drying. Dry. Technol. 2020, 38, 420–433. DOI: 10.1080/07373937.2019.1579735.
  • Khamtree, S.; Ratanawilai, T.; Nuntadusit, C. An Approach for Indirect Monitoring of Moisture Content in Rubberwood (Hevea brasiliensis) during Hot Air Drying. Dry. Technol. 2019, 37, 2116–2125. DOI: 10.1080/07373937.2018.1563901.
  • Sharma, R.; Nimaje, D. S. Effect of Open-Air and Hot-Air Oven Drying on Interparticle Bonding of Iron Ore Agglomerates. Dry. Technol. 2021, 39, 348–357. DOI: 10.1080/07373937.2020.1863423.
  • Polat, A.; Izli, N. Determination of Drying Kinetics and Quality Parameters for Drying Apricot Cubes with Electrohydrodynamic, Hot Air and Combined Electrohydrodynamic-Hot Air Drying Methods. Dry. Technol. 2020, 1–16. DOI: 10.1080/07373937.2020.1812633.
  • Etemoglu, A. B.; Ulcay, Y.; Can, M.; Avci, A. Mathematical Modelling of Combined Diffusion of Heat and Mass Transfer through Fabrics. Fibers Polym. 2009, 10, 252–259. DOI: 10.1007/s12221-009-0252-0.
  • Meda, A.; Katti, V. V. Local Distribution of Wall Static Pressure and Heat Transfer on a Rough Flat Plate Impinged by a Slot Air Jet. Heat Mass Transfer 2017, 53, 2497–2515. DOI: 10.1007/s00231-017-1999-2.
  • Liu, Z.-L.; Bai, J.-W.; Wang, S.-X.; Meng, J.-S.; Wang, H.; Yu, X.-L.; Gao, Z.-J.; Xiao, H.-W. Prediction of Energy and Exergy of Mushroom Slices Drying in Hot Air Impingement Dryer by Artificial Neural Network. Dry. Technol. 2020, 38, 1959–1970. DOI: 10.1080/07373937.2019.1607873.
  • Santos, R. M.; Llanos, J. W. P.; Quadri, M. B.; da Rocha, I. C. C. Study of Drying and Consumption of Natural Gas in a Textile Stenter of Direct Heating. Dry. Technol. 2015, 33, 37–54. DOI: 10.1080/07373937.2014.932286.
  • Mao, A. H.; Li, Y. Numerical Heat Transfer Coupled with Multidimensional Liquid Moisture Diffusion in Porous Textiles with a Measurable-Parameterized Model. Numer. Heat Transf. A-Appl. 2009, 56, 246–268. DOI: 10.1080/10407780903163330.
  • Zhu, Q. Y.; Xie, M. H.; Yang, J.; Li, Y. A Fractal Model for the Coupled Heat and Mass Transfer in Porous Fibrous Media. Int. J. Heat Mass Transf. 2011, 54, 1400–1409. DOI: 10.1016/j.ijheatmasstransfer.2010.12.001.
  • Fan, J.; Luo, Z.; Li, Y. Heat and Moisture Transfer with Sorption and Condensation in Porous Clothing Assemblies and Numerical Simulation. Int. J. Heat Mass Transf. 2001, 44, 1079–1079. DOI: 10.1016/S0017-9310(00)00246-5.
  • Fan, J.; Cheng, X.; Wen, X.; Sun, W. An Improved Model of Heat and Moisture Transfer with Phase Change and Mobile Condensates in Fibrous Insulation and Comparison with Experimental Results. Int. J. Heat Mass Transf. 2004, 47, 2343–2352. DOI: 10.1016/j.ijheatmasstransfer.2003.10.033.
  • Tian, J.; Lu, T. J.; Hodson, H. P.; Queheillalt, D. T.; Wadley, H. N. G. Cross Flow Heat Exchange of Textile Cellular Metal Core Sandwich Panels. Int. J. Heat Mass Transf. 2007, 50, 2521–2536. DOI: 10.1016/j.ijheatmasstransfer.2006.11.042.
  • Neves, S. F.; Campos, J. B. L. M.; Mayor, T. S. On the Determination of Parameters Required for Numerical Studies of Heat and Mass Transfer through Textiles—Methodologies and Experimental Procedures. Int. J. Heat Mass Transf. 2015, 81, 272–282. DOI: 10.1016/j.ijheatmasstransfer.2014.09.038.
  • Xu, D. H.; Ge, M. B.; Zhang, H. L. Numerical Solution of a Dynamic Model of Heat and Moisture Transfer in Porous Fabric under Low Temperature. Int. J. Heat Mass Transf. 2013, 61, 149–157. DOI: 10.1016/j.ijheatmasstransfer.2013.01.045.
  • Ye, C.; Huang, H.; Fan, J.; Sun, W. Numerical Study of Heat and Moisture Transfer in Textile Materials by a Finite Volume Method. Commun. Comput. Phys. 2008, 4, 929–948. DOI: 10.1016/j.chaos.2007.01.011.
  • Johann, G.; Silva, E.; Motta Lima, O.; Pereira, N. Mathematical Modeling of a Convective Textile Drying Process. Braz. J. Chem. Eng. 2014, 31, 959–965.85. DOI: 10.1590/0104-6632.20140314s000026.
  • Akyol, U.; Akan, A. E.; Durak, A. Simulation and Thermodynamic Analysis of a Hot-Air Textile Drying Process. J. Text. Inst. 2015, 106, 260–274. DOI: 10.1080/00405000.2014.916062.
  • Cay, A.; Gurlek, G.; Oglakcioglu, N. Analysis and Modeling of Drying Behavior of Knitted Textile Materials. Dry. Technol. 2017, 35, 509–521. DOI: 10.1080/07373937.2016.1192190.
  • Wei, Y.; Hua, J.; Ding, X. A Mathematical Model for Simulating Heat and Moisture Transfer within Porous Cotton Fabric Drying inside the Domestic Air-Vented Drum Dryer. J. Text. Inst. 2017, 108, 1074–1084. DOI: 10.1080/00405000.2016.1219450.
  • Zhu, G.; Kremenakova, D.; Wang, Y.; Militky, J.; Mishra, R.; Wiener, J. 3D Numerical Simulation of Laminar Flow and Conjugate Heat Transfer through Fabric. Autex Res. J. 2017, 17, 53–60. DOI: 10.1515/aut-2015-0052.
  • Liu, Z. L.; Bai, J. W.; Yang, W. X.; Wang, J.; Deng, Z. L.; Yu, X. L.; Xiao, H. W. Effect of High-Humidity Hot Air Impingement Blanching (HHAIB) and Drying Parameters on Drying Characteristics and Quality of Broccoli Florets. Dry. Technol. 2019, 37, 1–12. DOI: 10.1080/07373937.2018.1494185.
  • Pruengam, P.; Soponronnarit, S.; Prachayawarakorn, S.; Devahastin, S. Rapid Drying of Parboiled Paddy Using Hot Air Impinging Stream Dryer. Dry. Technol. 2014, 32, 37–41. DOI: 10.1080/07373937.2014.953173.
  • Liu, Z. L.; Bai, W.; Yang, W. X.; Wang, J.; Deng, Z. L.; Yu, X. L.; Xiao, H. W. Prediction of Energy and Exergy of Mushroom Slices Drying in Hot Air Impingement Dryer by Artificial Neural Network. Dry. Technol. 2020, 38, 1–14. DOI: 10.1080/07373937.2019.1607873.
  • Deng, L. Z.; Mujumdar, A. S.; Yang, W. X.; Xiao, H. W. Hot Air Impingement Drying Kinetics and Quality Attributes of Orange Peel. J. Food Process. Presev. 2020, 44, e14294. DOI: 10.1111/jfpp.14294.
  • Katti, V.; Prabhu, S. V. Experimental Study and Theoretical Analysis of Local Heat Transfer Distribution between Smooth Flat Surface and Impinging Air Jet from a Circular Straight Pipe Nozzle. Int. J. Heat Mass Transf. 2008, 51, 4480–4495. DOI: 10.1016/j.ijheatmasstransfer.2007.12.024.
  • Qian, M.; Wang, J.; Xiang, Z.; Zhao, Z.; Hu, X. Heat and Moisture Transfer Performance of Thin Cotton Fabric under Impingement Drying. Text. Res. J. 2019, 89, 3089–3097. DOI: 10.1177/0040517518807446.
  • Ashforth-Frost, S.; Jambunathan, K. Effect of Nozzle Geometry and Semi-Confinement on the Potential Core of a Turbulent Axisymmetric Free Jet. Int. Commun. Heat Mass 1996, 23, 155–162. DOI: 10.1016/0735-1933(96)00001-2.
  • Peishi, C.; Pei, D. C. T. A Mathematical Model of Drying Processes. Int. J. Heat Mass Transf. 1989, 32, 297–310. DOI: 10.1016/0017-9310(89)90177-4.
  • Stevens, J.; Webb, B. W. Local Heat Transfer Coefficients under an Axisymmetric, Single-Phase Liquid Jet. J. Heat Transf. 1991, 113, 71–78. [Database] DOI: 10.1115/1.2910554.
  • Loureiro, J. B. R.; Silva Freire, A. P. Velocity and Temperature Profiles, Wall Shear Stress and Heat Transfer Coefficient of Turbulent Impinging Jets. Int. J. Heat Mass Transf. 2017, 107, 846–861. DOI: 10.1016/j.ijheatmasstransfer.2016.10.105.
  • Nirmalkumar, M.; Katti, V.; Prabhu, S. V. Local Heat Transfer Distribution on a Smooth Flat Plate Impinged by a Slot Jet. Int. J. Heat Mass Transf. 2011, 54, 727–738. DOI: 10.1016/j.ijheatmasstransfer.2010.09.030.
  • Al-Kassir, A.; Coelho, P.; Garcia-Sanz-Calcedo, J.; Moral, F. J.; Kassir Al-Karany, R.; Yusaf, T. An Experimental Technology of Drying and Clean Combustion of Biomass Residues. Appl. Sci.-Basel 2018, 8, 1–10. DOI: 10.3390/app8060905.
  • Tang, Y.; Min, J.; Wu, X. Selection of Convective Moisture Transfer Driving Potential and Its Impacts upon Porous Plate Air-Drying Characteristics. Int. J. Heat Mass Transf. 2018, 116, 371–376. DOI: 10.1016/j.ijheatmasstransfer.2017.09.040.
  • Dobre, T.; Pârvulescu, O. C.; Stoica-Guzun, A.; Stroescu, M.; Jipa, I.; Al Janabi, A. A. A. Heat and Mass Transfer in Fixed Bed Drying of Non-Deformable Porous Particles. Int. J. Heat Mass Transf. 2016, 103, 478–485. DOI: 10.1016/j.ijheatmasstransfer.2016.07.079.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.