Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
1,135
Views
7
CrossRef citations to date
0
Altmetric
Research Article

Recent advances in sludge dewatering and drying technology

, &
Pages 3049-3063 | Received 22 Aug 2021, Accepted 11 Feb 2022, Published online: 27 Feb 2022

References

  • EPA U.S. 2018. Biosolids Generation, Use and Disposal in the United States.
  • AWA, A.W.A. 2018. Australian Biosolids Statistics. New South Wales.
  • Naqvi, S. R.; Tariq, R.; Shahbaz, M.; Naqvi, M.; Aslam, M.; Khan, Z.; Mackey, H.; Mckay, G.; Al-Ansari, T. Recent Developments on Sewage Sludge Pyrolysis and Its Kinetics: Resources Recovery, Thermogravimetric Platforms, and Innovative Prospects. Comput. Chem. Eng. 2021, 150, 107325. DOI: 10.1016/j.compchemeng.2021.107325.
  • Raheem, A.; Sikarwar, V. S.; He, J.; Dastyar, W.; Dionysiou, D. D.; Wang, W.; Zhao, M. Opportunities and Challenges in Sustainable Treatment and Resource Reuse of Sewage Sludge: A Review. Chem. Eng. J. 2018, 337, 616–641. DOI: 10.1016/j.cej.2017.12.149.
  • Jiang, G.; Xu, D.; Hao, B.; Liu, L.; Wang, S.; Wu, Z. Thermochemical Methods for the Treatment of Municipal Sludge. J. Cleaner Prod. 2021, 311, 127811. DOI: 10.1016/j.jclepro.2021.127811.
  • Ngo, P. L.; Udugama, I. A.; Gernaey, K. V.; Young, B. R.; Baroutian, S. Mechanisms, Status, and Challenges of Thermal Hydrolysis and Advanced Thermal Hydrolysis Processes in Sewage Sludge Treatment. Chemosphere. 2021, 281, 130890. DOI: 10.1016/j.chemosphere.2021.130890.
  • Rowe, D. R.; Abdel-Magid, I. M. Handbook of Wastewater Reclamation and Reuse. 2020. DOI: 10.1201/9780138752514.
  • Veres, Z.; Ditrói, J.; Tóth, G.; Mester, T.; Lakatos, G. The Efficiency of Municipal Wastewater Treatment with the Reconstructed Activated Sludge Method. J. Water Chem. Technol. 2014, 36, 139–143. DOI: 10.3103/S1063455X14030072.
  • Cheremisinoff, P. N. Handbook of Water and Wastewater Treatment Technology. Amsterdam, Netherlands: Elsevier. 2019. DOI: 10.1201/9780203752494.
  • Syed-Hassan, S. S. A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical Processing of Sewage Sludge to Energy and Fuel: Fundamentals, Challenges and Considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. DOI: 10.1016/j.rser.2017.05.262.
  • Christensen, M. L.; Keiding, K.; Nielsen, P. H.; Jørgensen, M. K. Dewatering in Biological Wastewater Treatment: A Review. Water Res. 2015, 82, 14–24.  DOI: 10.1016/j.watres.2015.04.019.
  • Peng, S.; Hu, A.; Ai, J.; Zhang, W.; Wang, D. Changes in Molecular Structure of Extracellular Polymeric Substances (EPS) with Temperature in Relation to Sludge Macro-Physical Properties. Water Res. 2021, 201, 117316. DOI: 10.1016/j.watres.2021.117316.
  • Wu, B.; Zhou, M.; Dai, X.; Chai, X. Mechanism Insights into Bio-Floc Bound Water Transformation Based on Synchrotron X-Ray Computed Microtomography and Viscoelastic Acoustic Response Analysis. Water Res. 2018, 142, 480–489. DOI: 10.1016/j.watres.2018.06.003.
  • Zhang, W.; Xu, Y.; Dong, B.; Dai, X. Characterizing the Sludge Moisture Distribution during Anaerobic Digestion Process through Various Approaches. Sci Total Environ. 2019, 675, 184–191. DOI: 10.1016/j.scitotenv.2019.04.095.
  • Wu, B.; Zhou, K.; He, Y.; Chai, X.; Dai, X. Unraveling the Water States of Waste-Activated Sludge through Transverse Spin-Spin Relaxation Time of Low-Field NMR. Water Res. 2019, 155, 266–274. DOI: 10.1016/j.watres.2019.02.031.
  • Xiao, K.; Chen, Y.; Jiang, X.; Tyagi, V. K.; Zhou, Y. Characterization of Key Organic Compounds Affecting Sludge Dewaterability during Ultrasonication and Acidification Treatments. Water Res. 2016, 105, 470–478. DOI: 10.1016/j.watres.2016.09.030.
  • Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/Flocculation in Dewatering of Sludge: A Review. Water Res. 2018, 143, 608–631. DOI: 10.1016/j.watres.2018.07.029.
  • Ji, C. c.; Zhou, H.; Deng, S. K.; Chen, K. Y.; Dong, X. Y.; Xu, X. H.; Cheng, L. H. Insight into the Adhesion Propensities of Extracellular Polymeric Substances (EPS) on the Abiotic Surface Using XDLVO Theory. J. Environ. Chem. Eng. 2021, 9, 106563. DOI: 10.1016/j.jece.2021.106563.
  • Qiu, S.; Yang, M.; Xu, P.; Rao, B. A New Fractal Model for Porous Media Based on Low-Field Nuclear Magnetic Resonance. J. Hydrol. 2020, 586, 124890. DOI: 10.1016/j.jhydrol.2020.124890.
  • Shen, Y.; Xu, P.; Qiu, S.; Rao, B.; Yu, B. A Generalized Thermal Conductivity Model for Unsaturated Porous Media with Fractal Geometry. Int. J. Heat Mass Transf. 2020, 152, 119540. DOI: 10.1016/j.ijheatmasstransfer.2020.119540.
  • Xu, P.; Li, C.; Qiu, S.; Sasmito, A. P. A Fractal Network Model for Fractured Porous Media. Fractals 2016, 24, 1650018–1650019. DOI: 10.1142/S0218348X16500183.
  • Panda, D.; Bhaskaran, S.; Paliwal, S.; Kharaghani, A.; Tsotsas, E.; Surasani, V. K. Pore-Scale Physics of Drying Porous Media Revealed by Lattice Boltzmann Simulations. Dry. Technol. 2020, 1–16. DOI: 10.1080/07373937.2020.1850469.
  • Rao, B.; Su, X.; Qiu, S.; Xu, P.; Lu, X.; Wu, M.; Zhang, J.; Zhang, Y.; Dong, W. Meso-Mechanism of Mechanical Dewatering of Municipal Sludge Based on Low-Field Nuclear Magnetic Resonance. Water Res. 2019, 162, 161–169. DOI: 10.1016/j.watres.2019.06.067.
  • Li, Z.; Sen; Tang, L. S.; Zhang, L. J.; Luo, Z. G. Dewatering Sludge by Osmotic Technique–a Comparative Experimental Study. Dry. Technol. 2019, 37, 680–690. DOI: 10.1080/07373937.2018.1454939.
  • Rao, B.; Su, X.; Lu, X.; Wan, Y.; Huang, G.; Zhang, Y.; Xu, P.; Qiu, S.; Zhang, J. Ultrahigh Pressure Filtration Dewatering of Municipal Sludge Based on Microwave Pretreatment. J. Environ. Manage. 2019, 247, 588–595. DOI: 10.1016/j.jenvman.2019.06.118.
  • Modern Drying Technology. 2014. DOI: 10.1002/9783527631728.
  • Liu, J.; Ma, J.; Liu, Y.; Yang, Y.; Yue, D.; Wang, H. Optimized Production of a Novel Bioflocculant M-C11 by Klebsiella Sp. and Its Application in Sludge Dewatering. J. Environ. Sci. (China). 2014, 26, 2076–2083. DOI: 10.1016/j.jes.2014.08.007.
  • Guo, B.; Yu, H.; Gao, B.; Zhang, S.; Yue, Q.; Xu, X. Novel Cationic Polyamidine: Synthesis, Characterization, and Sludge Dewatering Performance. J. Environ. Sci. (China) 2017, 51, 305–314. DOI: 10.1016/j.jes.2016.08.002.
  • Chiavola, A.; Salvati, C.; Bongirolami, S.; Di Marcantonio, C.; Boni Maria, R. Techno-Economic Evaluation of Ozone-Oxidation for Sludge Reduction at the Full-Scale. Comparison between the Application to the Return Activated Sludge (RAS) and the Sludge Digestion Unit. J. Water Process Eng. 2021, 42, 102114. DOI: 10.1016/j.jwpe.2021.102114.
  • Hashimoto, K.; Marushima, T.; Nakai, S.; Nishijima, W.; Motoshige, H. The Dead Cell Ratio of Bacteria in Sludge Flocs as an Indicator of Sludge Reduction in Sludge Ozone Process. Biochem. Eng. J. 2020, 154, 107427. DOI: 10.1016/j.bej.2019.107427.
  • Wu, B.; Dai, X.; Chai, X. Critical Review on Dewatering of Sewage Sludge: Influential Mechanism, Conditioning Technologies and Implications to Sludge Re-Utilizations. Water Res. 2020, 180, 115912. DOI: 10.1016/j.watres.2020.115912.
  • Zhang, J.; Xu, D.; Zhang, G.; Ren, Z.; Zhu, Y. Critical Review on Ultrasound Lysis-Cryptic Growth for Sludge Reduction. J. Environ. Chem. Eng. 2021, 9, 106263. DOI: 10.1016/j.jece.2021.106263.
  • Zhao, F.; Cheng, D. Changes in Pore Size Distribution inside Sludge under Various Ultrasonic Conditions. Ultrason. Sonochem. 2017, 38, 390–401. DOI: 10.1016/j.ultsonch.2017.03.025.
  • Feng, G.; Tan, W.; Zhong, N.; Liu, L. Effects of Thermal Treatment on Physical and Expression Dewatering Characteristics of Municipal Sludge. Chem. Eng. J. 2014, 247, 223–230. DOI: 10.1016/j.cej.2014.03.005.
  • Kim, H. J.; Chon, K.; Lee, Y. G.; Kim, Y. K.; Jang, A. Enhanced Mechanical Deep Dewatering of Dewatered Sludge by a Thermal Hydrolysis Pre-Treatment: Effects of Temperature and Retention Time. Environ. Res. 2020, 188, 109746. DOI: 10.1016/j.envres.2020.109746.
  • Faruqi, M. H. Z.; Siddiqui, F. Z.; Hassan, S. Z. Optimization of Microwave Treatment for Dewaterability Enhancement of Electroplating Sludge. J. Mater. Cycles Waste Manag. 2021, 23, 566–580. DOI: 10.1007/s10163-020-01141-z.
  • Xu, Y.; Wu, Y.; Zhang, X.; Chen, G. Effects of Freeze-Thaw and Chemical Preconditioning on the Consolidation Properties and Microstructure of Landfill Sludge. Water Res. 2021, 200, 117249. DOI: 10.1016/j.watres.2021.117249.
  • Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S. W.; Hong, Y.; Duc La, D.; Nguyen, X. C.; Hao Ngo, H.; et al. Review on Pretreatment Techniques to Improve Anaerobic Digestion of Sewage Sludge. Fuel. 2021, 285, 119105. DOI: 10.1016/j.fuel.2020.119105.
  • Wu, B.; Chai, X.; Zhao, Y. Enhanced Dewatering of Waste-Activated Sludge by Composite Hydrolysis Enzymes. Bioprocess Biosyst. Eng. 2016, 39, 627–639. DOI: 10.1007/s00449-016-1544-6.
  • Zhang, R.; Mao, Y.; Meng, L. Excess Sludge Cell Lysis by Ultrasound Combined with Ozone. Sep. Purif. Technol. 2021, 276, 119359. DOI: 10.1016/j.seppur.2021.119359.
  • Cao, B.; Zhang, T.; Zhang, W.; Wang, D. Enhanced Technology Based for Sewage Sludge Deep Dewatering: A Critical Review. Water Res. 2021, 189, 116650. DOI: 10.1016/j.watres.2020.116650.
  • Liang, J.; Gu, H.; Zhang, S.; Huang, J.; Ye, M.; Yang, X.; Li, S.; Huang, S.; Sun, S. Novel Insight into Sludge Dewaterability Mechanism Using Polymeric Aluminium Ferric Chloride and Anaerobic Mesophilic Digestion Treatment under Ultrahigh Pressure Condition. Sep. Purif. Technol. 2020, 234, 116137. DOI: 10.1016/j.seppur.2019.116137.
  • Mahmoud, A.; Hoadley, A. F. A.; Conrardy, J. B.; Olivier, J.; Vaxelaire, J. Influence of Process Operating Parameters on Dryness Level and Energy Saving during Wastewater Sludge Electro-Dewatering. Water Res. 2016, 103, 109–123. DOI: 10.1016/j.watres.2016.07.016.
  • Mahmoud, A.; Olivier, J.; Vaxelaire, J.; Hoadley, A. F. A. Electro-Dewatering of Wastewater Sludge: Influence of the Operating Conditions and Their Interactions Effects. Water Res. 2011, 45, 2795–2810. DOI: 10.1016/j.watres.2011.02.029.
  • Rao, B.; Pang, H.; Fan, F.; Zhang, J.; Xu, P.; Qiu, S.; Wu, X.; Lu, X.; Zhu, J.; Wang, G.; et al. Pore-Scale Model and Dewatering Performance of Municipal Sludge by Ultrahigh Pressurized Electro-Dewatering with Constant Voltage Gradient. Water Res. 2021, 189, 116611. DOI: 10.1016/j.watres.2020.116611.
  • Dizon, A. R.; Orazem, M. E. Mathematical Model and Optimization of Continuous Electro-Osmotic Dewatering. Electrochim. Acta. 2019, 304, 42–53. DOI: 10.1016/j.electacta.2019.02.033.
  • Citeau, M.; Olivier, J.; Mahmoud, A.; Vaxelaire, J.; Larue, O.; Vorobiev, E. Pressurised Electro-Osmotic Dewatering of Activated and Anaerobically Digested Sludges: Electrical Variables Analysis. Water Res. 2012, 46, 4405–4416. DOI: 10.1016/j.watres.2012.05.053.
  • Hu, Y.; Wang, Y. Study on the Dewatering Process for Water Treatment Residuals: Applicability of Freezing–Thawing, Compression, and Electro-Osmotic Treatment. Dry. Technol. 2017, 35, 1450–1459. DOI: 10.1080/07373937.2016.1253021.
  • Rao, B.; Huang, G.; Lu, X.; Wan, Y.; Jiang, Z.; Chen, D.; Liu, X.; Liang, A. An Ultrahigh-Pressure Filtration and Device Design and Optimiz Study on High Dry Dewatering of Sludge. Process Saf. Environ. Prot. 2017, 106, 129–137. DOI: 10.1016/j.psep.2017.01.001.
  • Iritani, E.; Katagiri, N.; Yamada, M.; Hwang, K. J.; Cheng, T. W. Ultrahigh-Pressure Expression of Activated Sludge Assisted with Self-Flocculation Caused by Ultrasonication. Chem. Eng. Res. Des. 2016, 112, 16–23. DOI: 10.1016/j.cherd.2016.06.008.
  • dos Reis, R. F.; Sergio Cordeiro, J.; Font, X.; Laguna Achon, C. The Biodrying Process of Sewage Sludge–a Review. Dry. Technol. 2020, 38, 1247–1260. DOI: 10.1080/07373937.2019.1629689.
  • Bennamoun, L.; Arlabosse, P.; Léonard, A. Review on Fundamental Aspect of Application of Drying Process to Wastewater Sludge. Renewable Sustainable Energy Rev. 2013, 28, 29–43. DOI: 10.1016/j.rser.2013.07.043.
  • Mujumdar, A. S. Handbook of Industrial Drying. London: Taylor & Francis. 2020. DOI: 10.1201/9780429289774.
  • Sun, G. Y.; Chen, M. Q.; Huang, Y. W. Evaluation on the Air-Borne Ultrasound-Assisted Hot Air Convection Thin-Layer Drying Performance of Municipal Sewage Sludge. Ultrason. Sonochem. 2017, 34, 588–599. DOI: 10.1016/j.ultsonch.2016.06.036.
  • Guo, J.; Chen, M.; Huang, Y.; Shokri, N. Salinity Effects on Ultrasound-Assisted Hot Air Drying Kinetics of Sewage Sludge. Thermochim. Acta 2019, 678, 178298. DOI: 10.1016/j.tca.2019.05.013.
  • Chen, L.; Liao, Y.; Ma, X. Economic Analysis on Sewage Sludge Drying and Its Co-Combustion in Municipal Solid Waste Power Plant. Waste Manag. 2021, 121, 11–22. DOI: 10.1016/j.wasman.2020.11.038.
  • Kobayashi, N.; Okada, K.; Tachibana, Y.; Kamiya, K.; Ito, T.; Ooki, H.; Zhang, B.; Suami, A.; Itaya, Y. Drying Behavior of Sludge with Drying Accelerator. Dry. Technol 2020, 38, 38–47. DOI: 10.1080/07373937.2019.1605611.
  • Wang, T.; Xue, Y.; Hao, R.; Hou, H.; Liu, J.; Li, J. Mechanism Investigations into the Effect of Rice Husk and Wood Sawdust Conditioning on Sewage Sludge Thermal Drying. J. Environ. Manage. 2019, 239, 316–323. DOI: 10.1016/j.jenvman.2019.03.074.
  • Avsar, Y.; Saral, A.; Ilhan, F.; Akyuz, B.; Gonullu, M. T. Vacuum-Assisted Thermal Drying of Wastewater Treatment Sludge. J. Air Waste Manag. Assoc. 2021, 71, 293–303. DOI: 10.1080/10962247.2020.1832622.
  • Zhou, Y.; Jin, Y. Mathematical Modeling of Thin-Layer Infrared Drying of Dewatered Municipal Sewage Sludge (DWMSS). Procedia Environ. Sci. 2016, 31, 758–766. DOI: 10.1016/j.proenv.2016.02.066.
  • Khanlari, A.; Doğuş Tuncer, A.; Sözen, A.; Şirin, C.; Gungor, A. Energetic, Environmental and Economic Analysis of Drying Municipal Sewage Sludge with a Modified Sustainable Solar Drying System. Sol. Energy. 2020, 208, 787–799. DOI: 10.1016/j.solener.2020.08.039.
  • Tuncer, A. D.; Sözen, A.; Afshari, F.; Khanlari, A.; Şirin, C.; Gungor, A. Testing of a Novel Convex-Type Solar Absorber Drying Chamber in Dehumidification Process of Municipal Sewage Sludge. J. Clean. Prod. 2020, 272, 122862. DOI: 10.1016/j.jclepro.2020.122862.
  • Wang, P.; Mohammed, D.; Zhou, P.; Lou, Z.; Qian, P.; Zhou, Q. Roof Solar Drying Processes for Sewage Sludge within Sandwich-like Chamber Bed. Renew. Energy 2019, 136, 1071–1081. DOI: 10.1016/j.renene.2018.09.081.
  • Poblete, R.; Painemal, O. Improvement of the Solar Drying Process of Sludge Using Thermal Storage. J. Environ. Manage. 2020, 255, 109883. DOI: 10.1016/j.jenvman.2019.109883.
  • Di Fraia, S.; Figaj, R. D.; Massarotti, N.; Vanoli, L. Corrigendum to an Integrated System for Sewage Sludge Drying through Solar Energy and a Combined Heat and Power Unit Fuelled by Biogas. Energ. Convers. Managem. 2018, 171, 587–603. S0196890418306289. (10.1016/j.Enconman.2018.06.018). Energy Conversion and Management. 2019. DOI: 10.1016/j.enconman.2018.12.017.
  • Mawioo, P. M.; Garcia, H. A.; Hooijmans, C. M.; Velkushanova, K.; Simonič, M.; Mijatović, I.; Brdjanovic, D. A Pilot-Scale Microwave Technology for Sludge Sanitization and Drying. Sci. Total Environ. 2017, 601, 1437–1448. DOI: 10.1016/j.scitotenv.2017.06.004.
  • Chen, Z.; Afzal, M. T.; Salema, A. A. Microwave Drying of Wastewater Sewage Sludge. JOCET. 2014, 2, 282–286. DOI: 10.7763/JOCET.2014.V2.140.
  • Bennamoun, L.; Chen, Z.; Afzal, M. T. Microwave Drying of Wastewater Sludge: Experimental and Modeling Study. Dry. Technol. 2016, 34, 235–342. DOI: 10.1080/07373937.2015.1040885.
  • Kocbek, E.; Garcia, H. A.; Hooijmans, C. M.; Mijatović, I.; Lah, B.; Brdjanovic, D. Microwave Treatment of Municipal Sewage Sludge: Evaluation of the Drying Performance and Energy Demand of a Pilot-Scale Microwave Drying System. Sci. Total Environ. 2020, 742, 140541. DOI: 10.1016/j.scitotenv.2020.140541.
  • Eom, H.; Jang, Y. H.; Lee, D. Y.; Kim, S. S.; Lee, S. M.; Cho, E. M. Optimization of a Hybrid Sludge Drying System with Flush Drying and Microwave Drying Technology. Chem. Eng. Res. Des. 2019, 148, 68–74. DOI: 10.1016/j.cherd.2019.05.058.
  • Zhang, T.; Yan, Z. W.; Wang, L. Y.; Zheng, W. J.; Wu, Q.; Meng, Q. L. Theoretical Analysis and Experimental Study on a Low-Temperature Heat Pump Sludge Drying System. Energy 2021, 214, 118985. DOI: 10.1016/j.energy.2020.118985.
  • Zhang, H.; Su, L.; Lv, T.; Dong, K. Coupling Heat Pump and Vacuum Drying Technology for Urban Sludge Processing. Energy Procedia 2019, 158, 1804–1810. In . DOI: 10.1016/j.egypro.2019.01.424.
  • Cai, L.; Krafft, T.; Chen, T.; Bin; Gao, D.; Wang, L. Structure Modification and Extracellular Polymeric Substances Conversion during Sewage Sludge Biodrying Process. Bioresour. Technol. 2016, 216, 414–421. DOI: 10.1016/j.biortech.2016.05.102.
  • Villegas, M.; Huiliñir, C. Biodrying of Sewage Sludge: Kinetics of Volatile Solids Degradation under Different Initial Moisture Contents and Air-Flow Rates. Bioresour. Technol. 2014, 174, 33–41. DOI: 10.1016/j.biortech.2014.09.136.
  • Peregrina, C.; Arlabosse, P.; Lecomte, D.; Rudolph, V. Heat and Mass Transfer during Fry-Drying of Sewage Sludge. Dry. Technol. 2006, 24, 797–818. DOI: 10.1080/07373930600733085.
  • Ohm, T. I.; Chae, J. S.; Lim, K. S.; Moon, S. H. The Evaporative Drying of Sludge by Immersion in Hot Oil: Effects of Oil Type and Temperature. J. Hazard. Mater. 2010, 178, 483–488. DOI: 10.1016/j.jhazmat.2010.01.107.
  • Wu, L.; Tu, J.; Cai, Y.; Wu, Z.; Li, Z. Biofuel Production from Pyrolysis of Waste Cooking Oil Fried Sludge in a Fixed Bed. J. Mater. Cycles Waste Manag. 2020, 22, 1163–1175. DOI: 10.1007/s10163-020-01007-4.
  • Park, K. T.; Lim, B. R.; Lee, S. K. Drying Characteristics of Sewage Sludge Using Vacuum Evaporation and Frying. J. Mater. Cycles Waste Manag. 2010, 12, 235–239. DOI: 10.1007/s10163-010-0293-x.
  • Ayol, A.; Durak, G. Fate and Effects of Fry-Drying Application on Municipal Dewatered Sludge. Dry. Technol. 2013, 31, 350–358. DOI: 10.1080/07373937.2012.736440.
  • Aggarwal, S.; Hakovirta, M. Supercritical Carbon Dioxide Drying of Municipal Sewage Sludge – Novel Waste-to-Energy Valorization Pathway. J. Environ. Manage. 2021, 285, 112148. DOI: 10.1016/j.jenvman.2021.112148.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.