Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 15
428
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Effects of dielectric barrier discharge (DBD) plasma on the drying kinetics, color, phenolic compounds, energy consumption and microstructure of lotus pollen

, , , , , & ORCID Icon show all
Pages 3100-3114 | Received 31 Oct 2021, Accepted 25 Feb 2022, Published online: 17 Mar 2022

References

  • Thakur, M.; Nanda, V. Composition and Functionality of Bee Pollen: A Review. Trends Food Sci. Technol. 2020, 98, 82–106. DOI: 10.1016/j.tifs.2020.02.001.
  • Dias, L.; Tolentino, G.; Pascoal, A.; Estevinho, L. Effect of Processing Conditions on the Bioactive Compounds and Biological Properties of Bee Pollen. J. Apic. Res. 2016, 55, 357–365. DOI: 10.1080/00218839.2016.1248109.
  • Melo, I.; Almeida-Muradian, L. Technology. Comparison of Methodologies for Moisture Determination on Dried Bee Pollen Samples. Ciênc. Tecnol. Aliment. 2011, 31, 194–197. DOI: 10.1590/S0101-20612011000100029.
  • De-Melo, A.; Estevinho, M.; Sattler, J.; Souza, B.; Da Silva Freitas, A.; Barth, O.; Almeida-Muradian, L. Effect of Processing Conditions on Characteristics of Dehydrated Bee-Pollen and Correlation between Quality Parameters. LWT-Food Sci. Technol. 2016, 65, 808–815. DOI: 10.1016/j.lwt.2015.09.014.
  • Thakur, M.; Pant, K.; Naik, R.; Nanda, V. Optimization of Spray Drying Operating Conditions for Production of Functional Milk Powder Encapsulating Bee Pollen. Dry. Technol. 2021, 39, 777–790. DOI: 10.1080/07373937.2020.1720225.
  • Abdul Halim, L.; Basrawi, F.; Md Yudin, A.; Abdul Razak, A.; Johari, N.; Muhamad, A. Mamat, M. Drying of Stingless Bees Pot-Pollen Using Swirling Fluidized Bed Dryer. Dry. Technol. 2020, 40, 1–8.
  • Katifori, E.; Alben, S.; Cerda, E.; Nelson, D.; Dumais, J. Foldable Structures and the Natural Design of Pollen Grains. Proc. Natl. Acad. Sci. USA. 2010, 107, 7635–7639.
  • Zuluaga-Domínguez, C.; Serrato-Bermudez, J.; Quicazán, M. Influence of Drying-Related Operations on Microbiological, Structural and Physicochemical Aspects for Processing of Bee Pollen. Eng. Agri. Environ. Food. 2018, 11, 57–64. DOI: 10.1016/j.eaef.2018.01.003.
  • Isik, A.; Ozdemir, M.; Doymaz, I. Infrared Drying of Bee Pollen: Effects and Impacts on Food Components. Czech J. Food Sci. 2019, 37, 69–74. DOI: 10.17221/410/2017-CJFS.
  • Harguindeguy, M.; Bobba, S.; Colucci, D.; Fissore, D. Effect of Vacuum Freeze-Drying on the Antioxidant Properties of Eggplants (Solanum Melongena L.). Dry. Technol. 2020, 39, 3–18. DOI: 10.1080/07373937.2019.1699834.
  • Wang, Z.; Duan, X.; Li, L.; Ren, G.; Wu, T.; Chen, J.; Ang, Y.; Guo, J.; Zhao, M. Effects of Freeze-Drying and Microwave Vacuum Freeze-Drying on the Activity of IgY: From the Perspective of Protein Structure. Dry. Technol. DOI: 10.1080/07373937.2021.2015373.
  • Martynenko, A.; Kudra, T. Electrically-Induced Transport Phenomena in EHD Drying – A Review. Trends Food Sci. Technol. 2016, 54, 63–73. DOI: 10.1016/j.tifs.2016.05.019.
  • Misra, N.; Pankaj, S.; Segat, A.; Ishikawa, K. Cold Plasma Interactions with Enzymes in Foods and Model Systems. Trends Food Sci. Technol. 2016, 55, 39–47. DOI: 10.1016/j.tifs.2016.07.001.
  • Martynenko, A.; Zheng, W. Electrohydrodynamic Drying of Apple Slices: Energy and Quality Aspects. J. Food Eng. 2016, 168, 215–222. DOI: 10.1016/j.jfoodeng.2015.07.043.
  • Esehaghbeygi, A.; Basiry, M. Electrohydrodynamic (Ehd) Drying of Tomato Slices (Lycopersicon Esculentum). J. Food Eng. 2011, 104, 628–631. DOI: 10.1016/j.jfoodeng.2011.01.032.
  • Polat, A.; Izli, N. Determination of Drying Kinetics and Quality Parameters for Drying Apricot Cubes with Electrohydrodynamic, Hot Air and Combined Electrohydrodynamic-Hot Air Drying Methods. Dry. Technol. 2020, 40, 1–16.
  • Pankaj, S.; Wan, Z.; Keener, K. Effects of Cold Plasma on Food Quality: A Review. Foods. 2018, 7, 4. DOI: 10.3390/foods7010004.
  • Mujumdar, A. S.; Xiao, H.-W. Advanced Drying Technologies for Foods. Boca Raton: CRC Press. 2019.
  • Dibanda, R.; Akdowa, E.; Tongwa, Q. Effect of Microwave Blanching on Antioxidant Activity, Phenolic Compounds and Browning Behaviour of Some Fruit Peelings. Food Chem. 2020, 302, 125308.
  • Cinkmanis, I.; Dimins, F.; Mikelsone, V. 2017 Influence of Lyophilization and Convective Type Drying on Antioxidant Properties, Total Phenols and Flavonoids in Pollens. 11th Baltic Conference on Food Science and Technology Food Science and Technology in a Changing World. Latvia University of Agriculture, pp 201–203.
  • Song, X.-D.; Mujumdar, A.; Law, C.; Fang, X.; Peng, W.; Deng, L.; Wang, J.; Xiao, H. Effect of Drying Air Temperature on Drying Kinetics, Color, Carotenoid Content, Antioxidant Capacity and Oxidation of Fat for Lotus Pollen. Dry. Technol. 2020, 38, 1151–1164. DOI: 10.1080/07373937.2019.1616752.
  • AOAC (Association of Official Analytical Chemists). Official Methods of Analysis. 1990.
  • Zhao, Y.; Yi, J.; Bi, J.; Chen, Q.; Zhou, M.; Zhang, B. Improving of Texture and Rehydration Properties by Ultrasound Pretreatment for Infrared-Dried Shiitake Mushroom Slices. Dry. Technol. 2019, 37, 352–362. DOI: 10.1080/07373937.2018.1456449.
  • Wiktor, A.; Iwaniuk, M.; Śledź, M.; Nowacka, M.; Chudoba, T.; Witrowa-Rajchert, D. Drying Kinetics of Apple Tissue Treated by Pulsed Electric Field. Dry. Technol. 2013, 31, 112–119. DOI: 10.1080/07373937.2012.724128.
  • Wang, H.; Fang, X.; Sutar, P.; Meng, J.; Wang, J.; Yu, X.; Xiao, H. Effects of Vacuum-Steam Pulsed Blanching on Drying Kinetics, Colour, Phytochemical Contents, Antioxidant Capacity of Carrot and the Mechanism of Carrot Quality Changes Revealed by Texture, Microstructure and Ultrastructure. Food Chem. 2021, 338, 127799.
  • Zhang, Y.; Ding, C. The Study of Thawing Characteristics and Mechanism of Frozen Beef in High Voltage Electric Field. IEEE Access. 2020, 8, 134630–134639. DOI: 10.1109/ACCESS.2020.3010948.
  • Luan, X.; Song, Z.; Xu, W.; Li, Y.; Ding, C.; Chen, H. Spectral Characteristics on Increasing Hydrophilicity of Alfalfa Seeds Treated with Alternating Current Corona Discharge Field. Spectrochim. Acta A. 2020, 236, 118350. DOI: 10.1016/j.saa.2020.118350.
  • Martynenko, A.; Astatkie, T.; Defraeye, T. The Role of Convection in Electrohydrodynamic Drying. J. Food Eng. 2020, 271, 109777. DOI: 10.1016/j.jfoodeng.2019.109777.
  • Jia, G.; Liu, H.; Nirasawa, S.; Liu, H. Effects of High-Voltage Electrostatic Field Treatment on the Thawing Rate and Post-Thawing Quality of Frozen Rabbit Meat. Innov. Food Sci. Emerg. Technol. 2017, 41, 348–356. DOI: 10.1016/j.ifset.2017.04.011.
  • Riener, J.; Noci, F.; Cronin, D.; Morgan, D.; Lyng, J. Combined Effect of Temperature and Pulsed Electric Fields on Apple Juice Peroxidase and Polyphenoloxidase Inactivation. Food Chem. 2008, 109, 402–407. DOI: 10.1016/j.foodchem.2007.12.059.
  • Dinani, S.; Hamdami, N.; Shahedi, M.; Havet, M.; Queveau, D. Influence of the Electrohydrodynamic Process on the Properties of Dried Button Mushroom Slices: A Differential Scanning Calorimetry (DSC) Study. Food Bioprod. Process. 2015, 95, 83–95. DOI: 10.1016/j.fbp.2015.04.001.
  • Xiao, H.; Law, C.; Sun, D.; Gao, Z. Color Change Kinetics of American Ginseng (Panax Quinquefolium) Slices during Air Impingement Drying. Dry. Technol. 2014, 32, 418–427. DOI: 10.1080/07373937.2013.834928.
  • Shahram, H.; Dinani, S. T. Influences of Electrohydrodynamic Time and Voltage on Extraction of Phenolic Compounds from Orange Pomace. LWT-Food Sci. Technol. 2019, 111, 23–30. DOI: 10.1016/j.lwt.2019.05.002.
  • Frenkel-Pinter, M.; Haynes, J.; Martin, C.; Petrov, A.; Burcar, B.; Krishnamurthy, R.; Hud, N.; Leman, L.; Williams, L. Selective Incorporation of Proteinaceous over Nonproteinaceous Cationic Amino Acids in Model Prebiotic Oligomerization Reactions. Proc. Natl. Acad. Sci. USA. 2019, 116, 16338–16346.
  • Marshall, M. How the First Life on Earth Survived Its Biggest Threat-Water. Nature. 2020, 588, 210–213.
  • Benlloch-Tinoco, M.; Igual, M.; Rodrigo, D.; Martínez-Navarrete, N. Comparison of Microwaves and Conventional Thermal Treatment on Enzymes Activity and Antioxidant Capacity of Kiwifruit Puree. Innov. Food Sci. Emerg. Technol. 2013, 19, 166–172. DOI: 10.1016/j.ifset.2013.05.007.
  • Chen, Y.; Martynenko, A. Combination of Hydrothermodynamic (Htd) Processing and Different Drying Methods for Natural Blueberry Leather. LWT-Food Sci. Technol. 2018, 87, 470–477. DOI: 10.1016/j.lwt.2017.09.030.
  • Wang, Q.; Li, Y.; Sun, D.; Zhu, Z. Enhancing Food Processing by Pulsed and High Voltage Electric Fields: Principles and Applications. Crit. Rev. Food Sci. 2018, 58, 2285–2298. DOI: 10.1080/10408398.2018.1434609.
  • Singh, A.; Orsat, V.; Raghavan, V. Soybean Hydrophobic Protein Response to External Electric Field: A Molecular Modeling Approach. Biomolecules. 2013, 3, 168–179. DOI: 10.3390/biom3010168.
  • Zhang, X.; Zhang, M.; Dong, L.; Jia, X.; Liu, L.; Ma, Y.; Huang, F.; Zhang, R. Phytochemical Profile, Bioactivity, and Prebiotic Potential of Bound Phenolics Released from Rice Bran Dietary Fiber during In Vitro Gastrointestinal Digestion and Colonic Fermentation. J. Agric. Food Chem. 2019, 67, 12796–12805. DOI: 10.1021/acs.jafc.9b06477.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.