202
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Efficient drying of laser-treated raspberry in a pulse-spouted microwave freeze dryer

, , &
Pages 2433-2444 | Received 26 Jan 2022, Accepted 24 Mar 2022, Published online: 06 Apr 2022

References

  • Tomas, M. Effect of Dietary Fiber Addition on the Content and in Vitro Bioaccessibility of Antioxidants in Red Raspberry Puree. Food Chem. 2022, 375, 131897. DOI: 10.1016/j.foodchem.2021.131897.
  • Wang, S. Y.; Chen, C.-T.; Wang, C. Y. The Influence of Light and Maturity on Fruit Quality and Flavonoid Content of Red Raspberries. Food Chem. 2009, 112, 676–684. DOI: 10.1016/j.foodchem.2008.06.032.
  • Sangiorgio, D.; Cellini, A.; Spinelli, F.; Pastore, C.; Farneti, B.; Savioli, S.; Rodriguez-Estrada, M. T.; Donati, I. Contribution of Fruit Microbiome to Raspberry Volatile Organic Compounds Emission. Postharvest. Biol. Technol. 2022, 183, 111742. DOI: 10.1016/j.postharvbio.2021.111742.
  • Zhang, W.; Xu, S.; Gao, M.; Peng, S.; Chen, L.; Lao, F.; Liao, X.; Wu, J. Profiling the Water Soluble Pectin in Clear Red Raspberry (Rubus Idaeus L. cv. Heritage) Juice: Impact of High Hydrostatic Pressure and High-Temperature Short-Time Processing on the Pectin Properties. Food Hydrocoll. 2022, 125, 107439. DOI: 10.1016/j.foodhyd.2021.107439.
  • Toshima, S.; Hirano, T.; Kunitake, H. Comparison of Anthocyanins, Polyphenols, and Antioxidant Capacities among Raspberry, Blackberry, and Japanese Wild Rubus Species. Sci. Hortic. 2021, 285, 110204. DOI: 10.1016/j.scienta.2021.110204.
  • Przybył, K.; Samborska, K.; Koszela, K.; Masewicz, L.; Pawlak, T. Artificial Neural Networks in the Evaluation of the Influence of the Type and Content of Carrier on Selected Quality Parameters of Spray Dried Raspberry Powders. Measurement 2021, 186, 110014. DOI: 10.1016/j.measurement.2021.110014.
  • Bustos, M. C.; Rocha-Parra, D.; Sampedro, I.; de Pascual-Teresa, S.; Leon, A. E. The Influence of Different Air-Drying Conditions on Bioactive Compounds and Antioxidant Activity of Berries. J. Agric. Food Chem. 2018, 66, 2714–2723. DOI: 10.1021/acs.jafc.7b05395.
  • Rodriguez, A.; Bruno, E.; Paola, C.; CampaÑOne, L.; Mascheroni, R. H. Experimental Study of Dehydration Processes of Raspberries (Rubus Idaeus) with Microwave and Solar Drying. Food Sci. Technol. 2019, 39, 336–343. DOI: 10.1590/fst.29117.
  • Catorze, C.; Tavares, A. P.; Cardão, P.; Castro, A.; Silva, M. E.; Ferreira, D. W.; Lopes, S.; Brás, I. Study of a Solar Energy Drying System—Energy Savings and Effect in Dried Food Quality. Energy Rep. 2022, 8, 392–398. DOI: 10.1016/j.egyr.2022.01.070.
  • Hnin, K. K.; Zhang, M.; Wang, B.; Devahastin, S. Different Drying Methods Effect on Quality Attributes of Restructured Rose Powder-Yam Snack Chips. Food Biosci. 2019, 32, 100486. DOI: 10.1016/j.fbio.2019.100486.
  • Piccolo, E.; Martìnez Garcìa, L.; Landi, M.; Guidi, L.; Massai, R.; Remorini, D. Influences of Postharvest Storage and Processing Techniques on Antioxidant and Nutraceutical Properties of Rubus Idaeus L.: A Mini-Review. Sci. Hortic. 2020, 6, 105. DOI: 10.3390/horticulturae6040105.
  • Ozcelik, M.; Ambros, S.; Morais, S. I. F.; Kulozik, U. Storage Stability of Dried Raspberry Foam as a Snack Product: Effect of Foam Structure and Microwave-Assisted Freeze Drying on the Stability of Plant Bioactives and Ascorbic Acid. J. Food Eng. 2020, 270, 109779. DOI: 10.1016/j.jfoodeng.2019.109779.
  • Wang, D.; Zhang, M.; Wang, Y.; Martynenko, A. Effect of Pulsed-Spouted Bed Microwave Freeze Drying on Quality of Apple Cuboids. Food Bioprocess Technol. 2018, 11, 941–952. DOI: 10.1007/s11947-018-2061-1.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R.-X. Comparison of Drying Characteristic and Uniformity of Banana Cubes Dried by Pulse-Spouted Microwave Vacuum Drying, Freeze Drying and Microwave Freeze Drying. J. Sci. Food Agric. 2014, 94, 1827–1834. DOI: 10.1002/jsfa.6501.
  • Jiang, H.; Zhang, M.; Mujumdar, A. S.; Lim, R.-X. Drying Uniformity Analysis of Pulse-Spouted Microwave-Freeze Drying of Banana Cubes. Dry. Technol. 2016, 34, 539–546. DOI: 10.1080/07373937.2015.1061000.
  • Qiu, L.; Zhang, M.; Wang, Y.; Liu, Y. Physicochemical and Nutritional Properties of Wasabi (Eutrema Yunnanense) Dried by Four Different Drying Methods. Dry. Technol. 2019, 37, 363–372. DOI: 10.1080/07373937.2018.1458318.
  • Wang, Y.; Zhang, M.; Adhikari, B.; Mujumdar, A. S.; Zhou, B. The Application of Ultrasound Pretreatment and Pulse-Spouted Bed Microwave Freeze Drying to Produce Desalted Duck Egg White Powders. Dry. Technol. 2013, 31, 1826–1836. DOI: 10.1080/07373937.2013.829851.
  • Li, L.; Zhang, M.; Zhou, L. A Promising Pulse-Spouted Microwave Freeze Drying Method Used for Chinese Yam Cubes Dehydration: Quality, Energy Consumption, and Uniformity. Dry. Technol. 2019, 39, 148–161. DOI: 10.1080/07373937.2019.1624564.
  • Wu, X.-F.; Zhang, M.; Bhandari, B.; Li, Z. Effects of Microwave-Assisted Pulse-Spouted Bed Freeze-Drying (MPSFD) on Volatile Compounds and Structural Aspects of Cordyceps militaris. J. Sci. Food Agric. 2018, 98, 4634–4643. DOI: 10.1002/jsfa.8993.
  • Sette, P.; Salvatori, D.; Schebor, C. Physical and Mechanical Properties of Raspberries Subjected to Osmotic Dehydration and Further Dehydration by Air- and Freeze-Drying. Food Bioprod. Process 2016, 100, 156–171. DOI: 10.1016/j.fbp.2016.06.018.
  • Bórquez, R. M.; Canales, E. R.; Redon, J. P. Osmotic Dehydration of Raspberries with Vacuum Pretreatment Followed by Microwave-Vacuum Drying. J. Food Eng. 2010, 99, 121–127. DOI: 10.1016/j.jfoodeng.2010.02.006.
  • Xu, X.; Zhang, L.; Feng, Y.; Yagoub, A. E. A.; Sun, Y.; Ma, H.; Zhou, C. Vacuum Pulsation Drying of Okra (Abelmoschus Esculentus L. Moench): Better Retention of the Quality Characteristics by Flat Sweep Frequency and Pulsed Ultrasound Pretreatment. Food Chem. 2020, 326, 127026. DOI: 10.1016/j.foodchem.2020.127026.
  • Liu, Y.; Zeng, Y.; Hu, X.; Sun, X. Effect of Ultrasonic Power on Water Removal Kinetics and Moisture Migration of Kiwifruit Slices during Contact Ultrasound Intensified Heat Pump Drying. Food Bioprocess Technol. 2020, 13, 430–441. DOI: 10.1007/s11947-019-02401-z.
  • Gong, C.; Liao, M.; Zhang, H.; Xu, Y.; Miao, Y.; Jiao, S. Investigation of Hot Air-Assisted Radio Frequency as a Final-Stage Drying of Pre-Dried Carrot Cubes. Food Bioprocess Technol. 2020, 13, 419–429. DOI: 10.1007/s11947-019-02400-0.
  • Si, X.; Chen, Q.; Bi, J.; Wu, X.; Yi, J.; Zhou, L.; Li, Z. Comparison of Different Drying Methods on the Physical Properties, Bioactive Compounds and Antioxidant Activity of Raspberry Powders. J. Sci. Food Agric. 2016, 96, 2055–2062. DOI: 10.1002/jsfa.7317.
  • Turkiewicz, I. P.; Wojdyło, A.; Tkacz, K.; Lech, K.; Nowicka, P. Osmotic Dehydration as a Pretreatment Modulating the Physicochemical and Biological Properties of the Japanese Quince Fruit Dried by the Convective and Vacuum-Microwave Method. Food Bioprocess Technol. 2020, 13, 1801–1816. DOI: 10.1007/s11947-020-02522-w.
  • Qu, P.; Zhang, M.; Fan, K.; Guo, Z. Microporous Modified Atmosphere Packaging to Extend Shelf Life of Fresh Foods: A Review. Critic. Rev. Food Sci. Nutr. 2020, 62, 51–65. DOI: 10.1080/10408398.2020.1811635.
  • Silva-Vera, W.; Avendaño-Muñoz, N.; Nuñez, H.; Ramírez, C.; Almonacid, S.; Simpson, R. CO2 Laser Drilling Coupled with Moderate Electric Fields for Enhancement of the Mass Transfer Phenomenon in a Tomato (Lycopersicon esculentum) Peeling Process. J. Food Eng. 2020, 276, 109870. DOI: 10.1016/j.jfoodeng.2019.109870.
  • Figueroa, C.; Ramírez, C.; Núñez, H.; Jaques, A.; Simpson, R. Application of Vacuum Impregnation and CO2-Laser Microperforations in the Potential Acceleration of the Pork Marinating Process. Innov. Food Sci. Emerg. Technol. 2020, 66, 102500. DOI: 10.1016/j.ifset.2020.102500.
  • Fujimaru, T.; Ling, Q.; Morrissey, M. T. Effects of Carbon Dioxide (CO2) Laser Perforation as Skin Pretreatment to Improve Sugar Infusion Process of Frozen Blueberries. J. Food Sci. 2012, 77, E45–51. DOI: 10.1111/j.1750-3841.2011.02525.x.
  • Veloso, G.; Simpson, R.; Núñez, H.; Ramírez, C.; Almonacid, S.; Jaques, A. Exploring the Potential Acceleration of the Osmotic Dehydration Process via Pretreatment with CO2-LASER Microperforations. J. Food Eng. 2021, 306, 110610. DOI: 10.1016/j.jfoodeng.2021.110610.
  • Araya, E.; Nuñez, H.; Ramírez, N.; Jaques, A.; Simpson, R.; Escobar, M.; Escalona, P.; Vega-Castro, O.; Ramírez, C. Exploring the Potential Acceleration of Granny Smith Apple Drying by Pre-Treatment with CO2 Laser Microperforation. Food Bioprocess Technol. 2022, 15, 391–406. DOI: 10.1007/s11947-022-02763-x.
  • Munzenmayer, P.; Ulloa, J.; Pinto, M.; Ramirez, C.; Valencia, P.; Simpson, R.; Almonacid, S. Freeze-Drying of Blueberries: Effects of Carbon Dioxide (CO2) Laser Perforation as Skin Pretreatment to Improve Mass Transfer, Primary Drying Time, and Quality. Foods 2020, 9, 211. DOI: 10.3390/foods9020211.
  • Li, L.; Zhang, M.; Zhou, L. A Promising Pulse-Spouted Microwave Freeze Drying Method Used for Chinese Yam Cubes Dehydration: Quality, Energy Consumption, and Uniformity. Dry. Technol. 2021, 39, 148–161. DOI: 10.1080/07373937.2019.1624564.
  • Sun, Y.; Zhang, M.; Mujumdar, A. S.; Yu, D. Pulse-Spouted Microwave Freeze Drying of Raspberry: Control of Moisture Using ANN Model Aided by LF-NMR. J. Food Eng. 2021, 292, 110354. DOI: 10.1016/j.jfoodeng.2020.110354.
  • Stamenkovic, Z.; Pavkov, I.; Radojcin, M.; Horecki, A. T.; Keselj, K.; Kovacevic, D. B.; Putnik, P. Convective Drying of Fresh and Frozen Raspberries and Change of Their Physical and Nutritive Properties. Foods 2019, 8, 251. DOI: 10.3390/foods8070251.
  • Rodriguez, A.; Rodriguez, M. M.; Lemoine, M. L.; Mascheroni, R. H. Study and Comparison of Different Drying Processes for Dehydration of Raspberries. Dry. Technol. 2017, 35, 689–698. DOI: 10.1080/07373937.2016.1202958.
  • Liu, Z.-L.; Xie, L.; Zielinska, M.; Pan, Z.; Deng, L.-Z.; Zhang, J.-S.; Gao, L.; Wang, S.-Y.; Zheng, Z.-A.; Xiao, H.-W. Improvement of Drying Efficiency and Quality Attributes of Blueberries Using Innovative Far-Infrared Radiation Heating Assisted Pulsed Vacuum Drying (FIR-PVD). Innov. Food Sci. Emerg. Technol. 2022, 77, 102948. DOI: 10.1016/j.ifset.2022.102948.
  • Sadowska, K.; Andrzejewska, J.; Klóska, Ł. Influence of Freezing, Lyophilisation and Air-Drying on the Total Monomeric Anthocyanins, Vitamin C and Antioxidant Capacity of Selected Berries. Int. J. Food Sci. Technol. 2017, 52, 1246–1251. DOI: 10.1111/ijfs.13391.
  • Chen, J-y.; Du, J.; Li, M-l.; Li, C-m. Degradation Kinetics and Pathways of Red Raspberry Anthocyanins in Model and Juice Systems and Their Correlation with Color and Antioxidant Changes during Storage. LWT 2020, 128, 109448. DOI: 10.1016/j.lwt.2020.109448.
  • Schulz, M.; Seraglio, S. K. T.; Betta, F. D.; Nehring, P.; Valese, A. C.; Daguer, H.; Gonzaga, L. V.; Costa, A. C. O.; Fett, R. Blackberry (Rubus Ulmifolius Schott): Chemical Composition, Phenolic Compounds and Antioxidant Capacity in Two Edible Stages. Food Res. Int. 2019, 122, 627–634. DOI: 10.1016/j.foodres.2019.01.034.
  • Ayoub, M.; de Camargo, A. C.; Shahidi, F. Antioxidants and Bioactivities of Free, Esterified and Insoluble-Bound Phenolics from Berry Seed Meals. Food Chem. 2016, 197, 221–232. DOI: 10.1016/j.foodchem.2015.10.107.
  • Yu, J.; Shangguan, Z.; Yang, X.; Sun, D.; Zhu, B.; Ouyang, J. Effect of Drying on the Bioactive Compounds and Antioxidant Activity of Rubus Lambertianus. Int. J. Food Eng. 2018, 14, 1–9. DOI: 10.1515/ijfe-2016-0412.
  • Jafari, S. M.; Ghalenoei, M. G.; Dehnad, D. Influence of Spray Drying on Water Solubility Index, Apparent Density, and Anthocyanin Content of Pomegranate Juice Powder. Powder Technol. 2017, 311, 59–65. DOI: 10.1016/j.powtec.2017.01.070.
  • Si, X.; Chen, Q.; Bi, J.; Yi, J.; Zhou, L.; Wu, X. Infrared Radiation and Microwave Vacuum Combined Drying Kinetics and Quality of Raspberry. J. Food Process Eng. 2016, 39, 377–390. DOI: 10.1111/jfpe.12230.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J. Microwave-Assisted Pulse-Spouted Bed Freeze-Drying of Stem Lettuce Slices-Effect on Product Quality. Food Bioprocess Technol. 2013, 6, 3530–3543. DOI: 10.1007/s11947-012-1017-0.
  • Huang, J.; Zhang, M. Effect of Three Drying Methods on the Drying Characteristics and Quality of Okra. Dry. Technol. 2016, 34, 900–911. DOI: 10.1080/07373937.2015.1086367.
  • Kowalski, S. J.; Pawłowski, A.; Szadzińska, J.; Łechtańska, J.; Stasiak, M. High Power Airborne Ultrasound Assist in Combined Drying of Raspberries. Innov. Food Sci. Emerg. Technol. 2016, 34, 225–233. DOI: 10.1016/j.ifset.2016.02.006.
  • Teng, X.; Zhang, M.; Devahastin, S.; Yu, D. Establishment of Lower Hygroscopicity and Adhesion Strategy for Infrared-Freeze-Dried Blueberries Based on Pretreatments Using CO2 Laser in Combination with Ultrasound. Food Bioprocess Technol. 2020, 13, 2043–2053. DOI: 10.1007/s11947-020-02543-5.
  • Anjos, R.; Cosme, F.; Gonçalves, A.; Nunes, F. M.; Vilela, A.; Pinto, T. Effect of Agricultural Practices, Conventional vs Organic, on the Phytochemical Composition of 'Kweli' and 'Tulameen' Raspberries (Rubus Idaeus L.). Food Chem. 2020, 328, 126833. DOI: 10.1016/j.foodchem.2020.126833.
  • Carvalho, E.; Fraser, P. D.; Martens, S. Carotenoids and Tocopherols in Yellow and Red Raspberries. Food Chem. 2013, 139, 744–752. DOI: 10.1016/j.foodchem.2012.12.047.
  • Saarela, J.; Heikkinen, S.; Fabritius, T.; Myllylä, R. Optical Object Detection in Paper Improved by Refractive Index Matching and Mechanical Treatment. Proc. Spie. 2008, 7022, 70221A-1–A-8. DOI: 10.1117/12.804109.
  • Sette, P.; Franceschinis, L.; Schebor, C.; Salvatori, D. Fruit Snacks from Raspberries: Influence of Drying Parameters on Colour Degradation and Bioactive Potential. Int. J. Food Sci. Technol. 2017, 52, 313–328. DOI: 10.1111/ijfs.13283.
  • Qiu, L.; Zhang, M.; Ju, R.; Wang, Y.; Chitrakar, B.; Wang, B. Effect of Different Drying Methods on the Quality of Restructured Rose Flower (Rosa Rugosa) Chips. Dry. Technol. 2020, 38, 1632–1643. DOI: 10.1080/07373937.2019.1653318.
  • Zhai, Y.; Cui, H.; Hayat, K.; Hussain, S.; Tahir, M. U.; Deng, S.; Zhang, Q.; Zhang, X.; Ho, C.-T. Transformation between 2-Threityl-Thiazolidine-4-Carboxylic Acid and Xylose-Cysteine Amadori Rearrangement Product Regulated by pH Adjustment during High-Temperature Instantaneous Dehydration. J. Agric. Food Chem. 2020, 68, 10884–10892. DOI: 10.1021/acs.jafc.0c04287.
  • Zhao, Y.; Ding, Y.; Wang, D.; Deng, Y.; Zhao, Y. Effect of High Hydrostatic Pressure Conditions on the Composition, Morphology, Rheology, Thermal Behavior, Color, and Stability of Black Garlic Melanoidins. Food Chem. 2021, 337, 127790. DOI: 10.1016/j.foodchem.2020.127790.
  • Sueishi, Y.; Nii, R. A Comparative Study of the Antioxidant Profiles of Olive Fruit and Leaf Extracts against Five Reactive Oxygen Species as Measured with a Multiple Free-Radical Scavenging Method. J. Food Sci. 2020, 85, 2737–2744. DOI: 10.1111/1750-3841.15388.
  • Lang, S.; Ozcelik, M.; Kulozik, U.; Steinhaus, M. Processing of Raspberries to Dried Fruit Foam: Impact on Major Odorants. Eur. Food Res. Technol. 2020, 246, 2537–2548. DOI: 10.1007/s00217-020-03595-9.
  • Blutinger, J. D.; Meijers, Y.; Chen, P. Y.; Zheng, C.; Grinspun, E.; Lipson, H. Characterization of CO2 Laser Browning of Dough. Innov. Food Sci. Emerg. Technol. 2019, 52, 145–157. DOI: 10.1016/j.ifset.2018.11.013.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.