Publication Cover
Drying Technology
An International Journal
Volume 40, 2022 - Issue 16
177
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Experimental investigation and modeling of atomization aspects in spray drying for production of pharmaceuticals with inhalable size

ORCID Icon, &
Pages 3591-3601 | Received 16 Jul 2021, Accepted 19 Apr 2022, Published online: 04 May 2022

References

  • Hickey, A. J.; Durham, P. G.; Dharmadhikari, A.; Nardell, E. A. Inhaled Drug Treatment for Tuberculosis: Past Progress and Future Prospects. J. Control Release 2016, 240, 127–134. DOI: 10.1016/j.jconrel.2015.11.018.
  • Pilcer, G.; Wauthoz, N.; Amighi, K. Lactose Characteristics and the Generation of the Aerosol. Adv. Drug Deliv. Rev. 2012, 64, 233–256. DOI: 10.1016/j.addr.2011.05.003.
  • Heyder, J.; Gebhart, J.; Rudolf, G.; Schiller, C. F.; Stahlhofen, W. Deposition of Particles in the Human Respiratory Tract in the Size Range 0.005–15 μm. J. Aerosol Sci. 1986, 17, 811–825. DOI: 10.1016/0021-8502(86)90035-2.
  • Aboul Fotouh, K.; Zhang, Y.; Maniruzzaman, M.; Williams, R. O.; Cui, Z. Amorphous Solid Dispersion Dry Powder for Pulmonary Drug Delivery: Advantages and Challenges. Int. J. Pharm. 2020, 587, 119711. DOI: 10.1016/j.ijpharm.2020.119711.
  • Vehring, R. Pharmaceutical Particle Engineering via Spray Drying. Pharm. Res. 2008, 25, 999–1022. DOI: 10.1007/s11095-007-9475-1.
  • Miller, D. A.; Ellenberger, D.; Gil, M. Spray-Drying Technology. Formulat. Poorly Water Soluble Drugs 2016, 22, 437–525. DOI: 10.1007/978-3-319-42609-9_10.
  • Pardeshi, S.; More, M.; Patil, P.; Pardeshi, C.; Deshmukh, P.; Mujumdar, A.; Naik, J. A Meticulous Overview on Drying-Based (Spray-, Freeze-, and Spray-Freeze) Particle Engineering Approaches for Pharmaceutical Technologies. Dry. Technol. 2021, 39, 1447–1491. DOI: 10.1080/07373937.2021.1893330.
  • Joshi, M.; Prabhakar, B. Development of Respirable Rifampicin Loaded Bovine Serum Albumin Formulation for the Treatment of Pulmonary Tuberculosis. J. Drug Deliv. Sci. Technol. 2021, 61, 102197. DOI: 10.1016/j.jddst.2020.102197.
  • Gomez, M.; McCollum, J.; Wang, H.; Ordoubadi, M.; Jar, C.; Carrigy, N. B.; Barona, D.; Tetreau, I.; Archer, M.; Gerhardt, A.; et al. Development of a Formulation Platform for a Spray-Dried, Inhalable Tuberculosis Vaccine Candidate. Int. J. Pharm. 2021, 593, 120121. DOI: 10.1016/j.ijpharm.2020.120121.
  • Handscomb, C. S.; Kraft, M.; Bayly, A. E. A New Model for the Drying of Droplets Containing Suspended Solids After Shell Formation. Chem. Eng. Sci. 2009, 64, 228–246. DOI: 10.1016/j.ces.2008.10.019.
  • Vehring, R.; Snyder, H.; Lechuga-Ballesteros, D.; Ballesteros, D. Spray Drying. Ch 7. In: Drying Technologies for Biotechnology and Pharmaceutical Applications; Ohtake, S.; Izutsu, K. L., Eds.; Wiley-VCH Verlag GmbH & Co. KGaA: New York, 2020; pp. 179–216. DOI: 10.1002/9783527802104.ch7.
  • Alhajj, N.; O'Reilly, N. J.; Cathcart, H. Designing Enhanced Spray Dried Particles for Inhalation: A Review of the Impact of Excipients and Processing Parameters on Particle Properties. Powder Technol. 2021, 384, 313–331. DOI: 10.1016/j.powtec.2021.02.031.
  • Vicente, J.; Pinto, J.; Menezes, J.; Gaspar, F. Fundamental Analysis of Particle Formation in Spray Drying. Powder Technol. 2013, 247, 1–7. DOI: 10.1016/j.powtec.2013.06.038.
  • Ploeger, K. J.; Adack, P.; Sundararajan, P.; Valente, P. C.; Henriques, J. G.; Rosenberg, K. J. Spray Drying and Amorphous Dispersions. In Chemical Engineering in the Pharmaceutical Industry: Drug Product Design, Development, and Modeling. 2nd ed.; Ende, M. T.; am Ende D. J. Eds.; Wiley: Hoboken, NJ, 2019, 267–292. DOI: 10.1002/9781119600800.ch62.
  • Kemp, I. C.; Wadley, R.; Hartwig, T.; Cocchini, U.; See-Toh, Y.; Gorringe, L.; Fordham, K.; Ricard, F. Experimental Study of Spray Drying and Atomization with a Two-Fluid Nozzle to Produce Inhalable Particles. Dry. Technol. 2013, 31, 930–941. DOI: 10.1080/07373937.2012.710693.
  • Paudel, A.; Worku, Z. A.; Meeus, J.; Guns, S.; Van den Mooter, G. Manufacturing of Solid Dispersions of Poorly Water Soluble Drugs by Spray Drying: Formulation and Process Considerations. Int. J. Pharm. 2013, 453, 253–284. DOI: 10.1016/j.ijpharm.2012.07.015.
  • Gallo, L.; Ramírez-Rigo, M. V.; Bucala, V. Development of Porous Spray-Dried Inhalable Particles Using an Organic Solvent-Free Technique. Powder Technol. 2019, 342, 642–652. DOI: 10.1016/j.powtec.2018.10.041.
  • Longest, P. W.; Farkas, D.; Hassan, A.; Hindle, M. Computational Fluid Dynamics (CFD) Simulations of Spray Drying: Linking Drying Parameters with Experimental Aerosolization Performance. Pharm. Res. 2020, 37, 101. DOI: 10.1007/s11095-020-02806-y.
  • Poozesh, S.; Lu, K.; Marsac, P. J. On the Particle Formation in Spray Drying Process for Bio-Pharmaceutical Applications: Interrogating a New Model via Computational Fluid Dynamics. Int. J. Heat Mass Transf. 2018, 122, 863–876. DOI: 10.1016/j.ijheatmasstransfer.2018.02.043.
  • Menshutina, N.; Lebedev, E.; Gordienko, M. CFD Analysis of the Dispersed Phase Behavior for Micropowders Production via Spray Drying and Ultrasonic Atomization. Dry. Technol. 2019, 37, 1891–1900. DOI: 10.1080/07373937.2018.1541903.
  • Seydel, P.; Blömer, J.; Bertling, J. Modeling Particle Formation at Spray Drying Using Population Balances. Dry. Technol. 2006, 24, 137–146. DOI: 10.1080/07373930600558912.
  • Fletcher, D. Computational Fluid Dynamics Simulation of Spray Dryers. An Engineer´s Guide. Book Review. Dry. Technol. 2017, 35, 903. DOI: 10.1080/07373937.2017.1282261.
  • Jaskulski, M.; Wawrzyniak, P.; Zbiciński, I. CFD Model of Particle Agglomeration in Spray Drying. Dry. Technol. 2015, 33, 1971–1980. DOI: 10.1080/07373937.2015.1081605.
  • Hernandez, B.; Fraser, B.; Martin de Juan, L.; Martin, M. Computational Fluid Dynamics (CFD) Modeling of Swirling Flows in Industrial Counter-Current Spray-Drying Towers under Fouling Conditions. Ind. Eng. Chem. Res. 2018, 57, 11988–12002. DOI: 10.1021/acs.iecr.8b02202.
  • Razmi, R.; Jubaer, H.; Krempski-Smejda, M.; Jaskulski, M.; Xiao, J.; Dong Chen, X.; Wai Woo, M. Recent Initiatives in Effective Modeling of Spray Drying. Dry. Technol. 2021, 39, 1614–1647. DOI: 10.1080/07373937.2021.1902344.
  • Wang, B.; Liu, F.; Xiang, J.; He, Y.; Zhang, Z.; Cheng, Z.; Liu, W.; Tan, S. A Critical Review of Spray-Dried Amorphous Pharmaceuticals: Synthesis, Analysis and Application. Int. J. Pharm. 2021, 594, 120165. DOI: 10.1016/j.ijpharm.2020.120165.
  • Kemp, I. C.; Hartwig, T.; Hamilton, P.; Wadley, R.; Bisten, A. Production of Fine Lactose Particles from Organic Solvent in Laboratory and Commercial-Scale Spray Dryers. Dry. Technol. 2016, 34, 830–842. DOI: 10.1080/07373937.2015.1084314.
  • Kemp, C.; Hartwig, T.; Herdman, R.; Hamilton, P.; Bisten, A.; Bermingham, S. Spray Drying with a Two-Fluid Nozzle to Produce Fine Particles: Atomisation, Scale-Up and Modelling. Dry. Technol. 2016, 34, 1243–1252. DOI: 10.1080/07373937.2015.1103748.
  • Al-Zaitone, B.; Al-Zahrani, A.; Al-Shahrani, S.; Lamprecht, A. Drying of a Single Droplet of Dextrin: Drying Kinetics Modeling and Particle Formation. Int. J. Pharm. 2020, 574, 118888. DOI: 10.1016/j.ijpharm.2019.118888.
  • Saha, D.; Nanda, S. K.; Yadav, D. N. Optimization of Spray Drying Process Parameters for Production of Groundnut Milk Powder. Powder Technol. 2019, 355, 417–424. DOI: 10.1016/j.powtec.2019.07.066.
  • Cotabarren, I. M.; Bertin, D.; Razuc, M.; Ramirez-Rigo, M. V.; Piña, J. Modelling of the Spray Drying Process for Particle Design. Chem. Eng. Res. Des. 2018, 132, 1091–1104. DOI: 10.1016/j.cherd.2018.01.012.
  • Elversson, J.; Millqvist-Fureby, A. Particle Size and Density in Spray Drying-Effects of Carbohydrate Properties. J. Pharm. Sci. 2005, 94, 2049–2060. DOI: 10.1002/jps.20418.
  • Gavrilova, N. N.; Nazarov, V. V.; Yarovaya, O. V. Microscopic Methods for Determining the Size of Particles of Dispersed Materials; Mendeleev University of Chemical Technology of Russia Publ.: Moscow, Russia, 2012 (in Russian).
  • Lechanteur, A.; Evrard, B. Influence of Composition and Spray-Drying Process Parameters on Carrier-Free DPI Properties and Behaviors in the Lung: A Review. Pharmaceutics 2020, 12, 55. DOI: 10.3390/pharmaceutics12010055.
  • Zhang, L.; Zeng, X.; Fu, N.; Tang, X.; Sun, Y.; Lin, L. Maltodextrin: A Consummate Carrier for Spray-Drying of Xylooligosaccharides. Food Res. Int. 2018, 106, 383–393. DOI: 10.1016/j.foodres.2018.01.004.
  • Ke, W.-R.; Chang, R. Y. K.; Kwok, P. C. L.; Chen, D.; Chan, H.-K. Spray Drying Lactose from Organic Solvent Suspensions for Aerosol Delivery to the Lungs. Int. J. Pharm. 2020, 591, 119984. DOI: 10.1016/j.ijpharm.2020.119984.
  • Priemel, P. A.; Wang, Y.; Bohr, A.; Water, J. J.; Yang, M.; Morck.; Nielsen, H. Poly(ethylene carbonate)-Containing Polylactic Acid Microparticles with Rifampicin Improve Drug Delivery to Macrophages. J. Pharm. Pharmacol. 2018, 70, 1009–1021. DOI: 10.1111/jphp.12937.
  • Scherließ, R.; Janke, J. Preparation of Poly-Lactic-Co-Glycolic Acid Nanoparticles in a Dry Powder Formulation for Pulmonary Antigen Delivery. Pharmaceutics 2021, 13, 1196. DOI: 10.3390/pharmaceutics13081196.
  • Mönckedieck, M.; Kamplade, J.; Fakner, P.; Urbanetz, N. A.; Walzel, P.; Steckel, H.; Scherließ, R. Spray Drying of Mannitol Carrier Particles with Defined Morphology and Flow Characteristics for Dry Powder Inhalation. Dry. Technol. 2017, 35, 1843–1857. DOI: 10.1080/07373937.2017.1281291.
  • Tse, J. Y.; Kadota, K.; Imakubo, T.; Uchiyama, H.; Tozuka, Y. Enhancement of the Extra-Fine Particle Fraction of Levofloxacin Embedded in Excipient Matrix Formulations for Dry Powder Inhaler Using Response Surface Methodology. Eur. J. Pharm. Sci. 2021, 156, 105600. DOI: 10.1016/j.ejps.2020.105600.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.