Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 4
378
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effects of freeze-thaw pretreatments on the drying characteristics, physicochemical and phytochemical composition of red dragon fruit during mid- and near-infrared drying

, ORCID Icon, &
Pages 561-576 | Received 28 Apr 2022, Accepted 29 Jul 2022, Published online: 22 Aug 2022

References

  • Araújo, C. d. S.; Corrêa, J. L. G.; Dev, S.; Macedo, L. L.; Vimercati, W. C.; Rodrigues de Oliveira, C.; Pio, L. A. S. Influence of Pretreatment with Ethanol and Drying Temperature on Physicochemical and Antioxidant Properties of White and Red Pulp Pitayas Dried in Foam Mat. Dry Technol. 2022, 40, 484–493. DOI: 10.1080/07373937.2020.1809446.
  • Bassey, E. J.; Cheng, J.-H.; Sun, D.-W. Novel Nonthermal and Thermal Pretreatments for Enhancing Drying Performance and Improving Quality of Fruits and Vegetables. Trends Food Sci. Technol. 2021, 112, 137–148. DOI: 10.1016/j.tifs.2021.03.045.
  • Lin, X.; Sun, D.-W., Development of a General Model for Monitoring Moisture Distribution of Four Vegetables Undergoing Microwave-Vacuum Drying by Hyperspectral Imaging. Dry Technol. 2022, 40, 1478–1492. DOI: 10.1080/07373937.2021.1950171.
  • Lin, X.; Lyng, J.; O'Donnell C.; Sun, D.-W. Effects of Dielectric Properties and Microstructures on Microwave-Vacuum Drying of Mushroom (Agaricus bisporus) Caps and Stipes Evaluated by Non-destructive Techniques. Food Chem. 2022, 367, 130698. DOI: 10.1016/j.foodchem.2021.130698.
  • Vallespir, F.; Rodríguez, Ó.; Eim, V. S.; Rosselló, C.; Simal, S. Effects of Freezing Treatments before Convective Drying on Quality Parameters: Vegetables with Different Microstructures. J. Food Eng. 2019, 249, 15–24. DOI: 10.1016/j.jfoodeng.2019.01.006.
  • Lin, X.; Xu, J.-L. and Sun, D.-W. Comparison of Moisture Uniformity between Microwave-Vacuum and Hot-Air Dried Ginger Slices Using Hyperspectral Information Combined with Semivariogram, Dry Technol. 2021, 39, 1044–1058. DOI: 10.1080/07373937.2020.1741006.
  • Lin, X.; Xu, J.-L.; Sun, D.-W. Evaluating Drying Feature Differences between Ginger Slices and Splits during Microwave-Vacuum Drying by Hyperspectral Imaging Technique, Food Chem. 2020, 32, 127407. DOI: 10.1016/j.foodchem.2020.127407.
  • Bassey, E. J.; Cheng, J.-H.; Sun, D.-W. Improving Drying Kinetics, Physicochemical Properties and Bioactive Compounds of Red Dragon Fruit (Hylocereus Species) by Novel Infrared Drying. Food Chem 2022, 375, 131886. DOI: 10.1016/j.foodchem.2021.131886.
  • Wu, X. F.; Zhang, M.; Bhandari, B. A Novel Infrared Freeze Drying (IRFD) Technology to Lower the Energy Consumption and Keep the Quality of Cordyceps Militaris. Innov Food Sci. Emerg. Technol. 2019, 54, 34–42. DOI: 10.1016/j.ifset.2019.03.003.
  • Su, W.-H.; Bakalis, S.; Sun, D.-W. Chemometric Determination of Time Series Moisture in Both Potato and Sweet Potato Tubers During Hot Air and Microwave Drying Using Near/Mid-Infrared (NIR/MIR) Hyperspectral Techniques. Drying Technol, 2020, 38, 806–823. DOI: 10.1080/07373937.2019.1593192.
  • Su, W.-H.; Bakalis, S.; Sun, D.-W. Fingerprinting Study of Time Series Variations of Tuber Ultimate Compressive Strength (UCS) at Different Drying Times Using Mid-Infrared (MIR) Imaging Spectroscopy. Drying Technol. 2019, 37, 1113–1130. DOI: 10.1080/07373937.2018.1487450.
  • Noshad, M.; Ghasemi, P. Influence of Freezing Pretreatments on Kinetics of Convective Air-Drying and Quality of Grapes. Food Biosci. 2020, 38, 100763. DOI: 10.1016/j.fbio.2020.100763.
  • Zhou, C.; Cai, Z.; Wang, X.; Feng, Y.; Xu, X.; Yagoub, A. E. A.; Wahia, H.; Ma, H.; Sun, Y. Effects of Tri-Frequency Ultrasonic Vacuum-Assisted Ethanol Pretreatment on Infrared Drying Efficiency, Qualities and Microbial Safety of Scallion Stalk Slices. Dry Technol. 2021, 1–16.
  • Feng, Y.; Ping, T. C.; Zhou, C.; Yagoub, A. E. G. A.; Xu, B.; Sun, Y.; Ma, H.; Xu, X.; Yu, X. Effect of Freeze-Thaw Cycles Pretreatment on the Vacuum Freeze-Drying Process and Physicochemical Properties of the Dried Garlic Slices. Food Chem 2020, 324, 126883. DOI: 10.1016/j.foodchem.2020.126883.
  • Tian, Y.; Sun, D.-W.; Zhu, Z. Development of Natural Deep Eutectic Solvents (NADESs) as Anti-Freezing Agents for the Frozen Food Industry: Water-Tailoring Effects, Anti-Freezing Mechanisms and Applications. Food Chem. 2022, 371, 131150. DOI: 10.1016/j.foodchem.2021.131150.
  • Zhang, W.; Ma J.; Sun, D.-W. Raman Spectroscopic Techniques for Detecting Structure and Quality of Frozen Foods: Principles and Applications. Crit. Rev. Food Sci. Nutr. 2021, 61, 2623–2639. DOI: 10.1080/10408398.2020.1828814.
  • Zielinska, M.; Sadowski, P.; Błaszczak, W. Freezing/Thawing and Microwave-Assisted Drying of Blueberries (Vaccinium Corymbosum L.). LWT-Food Sci. Technol. 2015, 62, 555–563. DOI: 10.1016/j.lwt.2014.08.002.
  • Cheng, L.; Zhu, Z.; Sun, D.-W. Impacts of High Pressure Assisted Freezing on the Denaturation of Polyphenol Oxidase. Food Chem. 2021, 335, 127485. DOI: 10.1016/j.foodchem.2020.127485.
  • Tian, Y.; Zhang, Z.; Zhu Z.; Sun, D.-W. Effects of Nano-Bubbles and Constant/Variable-Frequency Ultrasound-Assisted Freezing on Freezing Behaviour of Viscous Food Model Systems, J. Food Eng. 2021, 292, 110284. DOI: 10.1016/j.jfoodeng.2020.110284.
  • Antal, T.; Sikolya, L.; Kerekes, B. Assessment of Freezing Pre-Treatments for the Freeze Dried of Apple Slices. Acta Univ Cibiniensis Ser E Food Technol. 2013, 17, 3–14. DOI: 10.2478/aucft-2013-0006.
  • Tian, Y.; Chen, Z.; Zhu, Z.; Sun, D.-W. Effects of tissue pre-degassing followed by ultrasound-assisted freezing on freezing efficiency and quality attributes of radishes. Ultrason. Sonochem. 2020, 67, 105162. DOI: 10.1016/j.ultsonch.2020.105162.
  • Zhang, L.; Yu, X.; Arun, S. M.; Zhou, C. Effect of Freeze-Thaw Pretreatment Combined with Variable Temperature on Infrared and Convection Drying of Lotus Root. Lwt Food Sci. Technol. 2022, 154, 112804. DOI: 10.1016/j.lwt.2021.112804.
  • Tian, Y; Zhang, P.; Zhu, Z.; Sun, D.-W. Development of a Single/Dual-Frequency Orthogonal Ultrasound-Assisted Rapid Freezing Technique and its Effects on Quality Attributes of Frozen Potatoes. J. Food Eng. 2020, 286, 110112. DOI: 10.1016/j.jfoodeng.2020.110112.
  • Tian, Y.; Li, D.; Luo, W.; Zhu, Z.; Li, W.; Qian, Z.; Li, G.; Sun, D.-W. Rapid Freezing Using Atomized Liquid Nitrogen Spray Followed by Frozen Storage Below Glass Transition Temperature for Cordyceps Sinensis Preservation: Quality Attributes and Storage Stability, LWT - Food Sci. Technol. 2020, 123, 109066. DOI: 10.1016/j.lwt.2020.109066.
  • Zhang, M.; Bhandari, B.; Fang, Z. Handbook of Drying of Vegetables and Vegetable Products; CRC Press: Boca Raton, FL, 2017.
  • Vallespir, F.; Rodríguez, Ó.; Eim, V. S.; Rosselló, C.; Simal, S. Freezing Pre-Treatments on the Intensification of the Drying Process of Vegetables with Different Structures. J. Food Eng. 2018, 239, 83–91. DOI: 10.1016/j.jfoodeng.2018.07.008.
  • Bao, T.; Hao, X.; Shishir, M. R. I.; Karim, N.; Chen, W. Cold Plasma: An Emerging Pretreatment Technology for the Drying of Jujube Slices. Food Chem. 2021, 337, 127783. DOI: 10.1016/j.foodchem.2020.127783.
  • Ferrari, C. C.; Germer, S. P. M.; de Aguirre, J. M. Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Dry Technol. 2012, 30, 154–163. DOI: 10.1080/07373937.2011.628429.
  • Seerangurayar, T.; Al-Ismaili, A. M.; Jeewantha, L. J.; Al-Nabhani, A. Experimental Investigation of Shrinkage and Microstructural Properties of Date Fruits at Three Solar Drying Methods. Sol. Energy 2019, 180, 445–455. DOI: 10.1016/j.solener.2019.01.047.
  • Zielinska, M.; Markowski, M.; Zielinska, D. The Effect of Freezing on the Hot Air and Microwave Vacuum Drying Kinetics and Texture of Whole Cranberries. Dry Technol. 2019, 37, 1714–1730. DOI: 10.1080/07373937.2018.1543317.
  • Nistor, O. V.; Seremet, L.; Andronoiu, D. G.; Rudi, L.; Botez, E. Influence of Different Drying Methods on the Physicochemical Properties of Red Beetroot (Beta vulgaris L. var. Cylindra). Food Chem. 2017, 236, 59–67. DOI: 10.1016/j.foodchem.2017.04.129.
  • Xu, X.; Zhang, L.; Yagoub, A. E. A.; Yu, X.; Ma, H.; Zhou, C. Effects of Ultrasound, Freeze-Thaw Pretreatments and Drying Methods on Structure and Functional Properties of Pectin during the Processing of Okra. Food Hydrocoll 2021, 120, 106965. DOI: 10.1016/j.foodhyd.2021.106965.
  • Ando, Y.; Hagiwara, S.; Nabetani, H.; Sotome, I.; Okunishi, T.; Okadome, H.; Orikasa, T.; Tagawa, A. Improvements of Drying Rate and Structural Quality of Microwave-Vacuum Dried Carrot by Freeze-Thaw Pretreatment. Lwt Food Sci. Technol. 2019, 100, 294–299. DOI: 10.1016/j.lwt.2018.10.064.
  • Liu, Z. L.; Staniszewska, I.; Zielinska, D.; Zhou, Y. H.; Nowak, K. W.; Xiao, H. W.; Pan, Z.; Zielinska, M. Combined Hot Air and Microwave-Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties. Food Bioprocess Technol. 2020, 13, 1848–1856. DOI: 10.1007/s11947-020-02507-9.
  • Tian, Y.; Zhu, Z.; Sun, D.-W. Naturally Sourced Biosubstances for Regulating Freezing Points in Food Researches: Fundamentals, Current Applications and Future Trends. Trends Food Sci. Technol. 2020, 95, 131–140. DOI: 10.1016/j.tifs.2019.11.009.
  • Mahato, S.; Zhu, Z.; Sun, D.-W. Glass Transitions as Affected by Food Compositions and by Conventional and Novel Freezing Technologies: A Review. Trends Food Sci. Technol. 2019, 94, 1–11. DOI: 10.1016/j.tifs.2019.09.010.
  • Liu, Y.; Wang, Y.; Lv, W.-Q.; Dong, L.; Wang, L.-J. Freeze-Thaw and Ultrasound Pretreatment before Microwave Combined Drying Affects Drying Kinetics, Cell Structure and Quality Parameters of Platycodon Grandiflorum. Ind. Crops Prod. 2021, 164, 113391. DOI: 10.1016/j.indcrop.2021.113391.
  • Chassagne-Berces, S.; Fonseca, F.; Citeau, M.; Marin, M. Freezing Protocol Effect on Quality Properties of Fruit Tissue according to the Fruit, the Variety and the Stage of Maturity. LWT Food Sci. Technol. 2010, 43, 1441–1449. DOI: 10.1016/j.lwt.2010.04.004.
  • Zhan, X; Zhu, Z; Sun, D-W. Effects of Extremely Low Frequency Electromagnetic Field on the Freezing Processes of Two Liquid Systems. LWT - Food Sci. Technol. 2019, 103, 212–221. DOI: 10.1016/j.lwt.2018.12.079.
  • Zhan, X.; Zhu, Z.; Sun, D-W. Effects of Pretreatments on Quality Attributes of Long-Term Deep-Frozen Storage of Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 743–757. DOI: 10.1080/10408398.2018.1496900.
  • Lammerskitten, A.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czyżewski, J.; Witrowa-Rajchert, D.; Parniakov, O. Impact of Pulsed Electric Fields on Physical Properties of Freeze-Dried Apple Tissue. Innov. Food Sci. Emerg. Technol. 2019, 57, 102211. DOI: 10.1016/j.ifset.2019.102211.
  • Li, L.; Zhang, M.; Chitrakar, B.; Jiang, H. Effect of Combined Drying Method on Phytochemical Components, Antioxidant Capacity and Hygroscopicity of Huyou (Citrus Changshanensis) Fruit. LWT-Food Sci. Technol. 2020, 123, 109102. DOI: 10.1016/j.lwt.2020.109102.
  • Teng, X.; Zhang, M.; Bhandari, B.; Xu, J.; Liu, Y. A Comparative Study on Hygroscopic and Physiochemical Properties of Chicken Powders Obtained by Different Drying Methods. Dry Technol. 2020, 38, 1929–1942. DOI: 10.1080/07373937.2019.1679831.
  • Miraei Ashtiani, S. H.; Rafiee, M.; Mohebi Morad, M.; Martynenko, A. Cold Plasma Pretreatment Improves the Quality and Nutritional Value of Ultrasound-Assisted Convective Drying: The Case of Goldenberry. Dry Technol. 2022, 40, 1639–1657. DOI: 10.1080/07373937.2022.2050255.
  • Ren, Z.; Yu, X.; Yagoub, A. E. G. A.; Fakayode, O. A.; Ma, H.; Sun, Y.; Zhou, C. Combinative Effect of Cutting Orientation and Drying Techniques (Hot Air, Vacuum, Freeze and Catalytic Infrared Drying) on the Physicochemical Properties of Ginger (Zingiber Officinale Roscoe). LWT. Food Sci. Technol. 2021, 144, 111238. DOI: 10.1016/j.lwt.2021.111238.
  • Long, Y.; Zhang, M.; Mujumdar, A. S.; Chen, J. Valorization of Turmeric (Curcuma Longa L.) Rhizome: Effect of Different Drying Methods on Antioxidant Capacity and Physical Properties. Dry Technol. 2022, 40, 1609–1619. DOI: 10.1080/07373937.2022.2032135.
  • Tiliwa, E. S.; Han, C.; Xu, B.; Mujumdar, A. S.; Zhou, C.; Ma, H. Comparative Study of Intermediate-Wave and Catalytic Infrared Drying on the Kinetics and Physicochemical Properties of Pineapple Rings. Dry Technol. 2022, 1–13. DOI: 10.1080/07373937.2022.2078834.
  • Da Silva Junior, E. V.; de Melo, L. L.; de Medeiros, R. A. B.; Barros, Z. M. P.; Azoubel, P. M. Influence of Ultrasound and Vacuum Assisted Drying on Papaya Quality Parameters. LWT Food Sci. Technol 2018, 97, 317–322. DOI: 10.1016/j.lwt.2018.07.017.
  • Ravichandran, K.; Saw, N. M. M. T.; Mohdaly, A. A.; Gabr, A. M.; Kastell, A.; Riedel, H.; Cai, Z.; Knorr, D.; Smetanska, I. Impact of Processing of Red Beet on Betalain Content and Antioxidant Activity. Food Res. Intl 2013, 50, 670–675. DOI: 10.1016/j.foodres.2011.07.002.
  • Vallespir, F.; Cárcel, J. A.; Marra, F.; Eim, V. S.; Simal, S. Improvement of Mass Transfer by Freezing Pretreatment and Ultrasound Application on the Convective Drying of Beetroot (Beta vulgaris L.). Food Bioprocess Technol 2018, 11, 72–83.
  • Ermis, E.; Özkan, M. Sugar Beet Powder Production Using Different Drying Methods, Characterization and Influence on Sensory Quality of Cocoa-Hazelnut Cream. J. Food Sci. Technol. 2021, 58, 2068–2077. DOI: 10.1007/s13197-020-04715-9.
  • Zielinska, M.; Ropelewska, E.; Zapotoczny, P. Effects of Freezing and Hot Air Drying on the Physical, Morphological and Thermal Properties of Cranberries (Vaccinium macrocarpon). Food Bioprod. Process 2018, 110, 40–49. DOI: 10.1016/j.fbp.2018.04.006.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.