Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 4
220
Views
0
CrossRef citations to date
0
Altmetric
Articles

Emission of volatile organic compounds from heat-treated Scots pine wood as affected by wood drying method: Results obtained with olfactory machine and headspace gas chromatography-mass spectrometry

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 577-589 | Received 17 Mar 2022, Accepted 31 Jul 2022, Published online: 18 Aug 2022

References

  • C, H. Wood Modification: Chemical, Thermal and Other Processes, John Wiley and Sons: Chichester, 2006.
  • Kamdem, D. P.; Pizzi, A.; Triboulot, M. C. Heat-Treated Timber: Potentially Toxic Byproducts Presence and Extent of Wood Cell Wall Degradation. Eur. J. Wood Wood Prod. 2000, 58, 253–257. DOI: 10.1007/s001070050420.
  • Milota, M. R.; Lavery, M. R. Temperature and Humidity Effects on Emissions of Volatile Organic Compounds from Ponderosa Pine Lumber. Dry. Technol. 2003, 21, 165–174. DOI: 10.1081/DRT-120017289.
  • Danielsson, S.; Rasmuson, A. The Influence of Drying Medium, Temperature, and Time on the Release of Monoterpenes during Convective Drying of Wood Chips. Dry. Technol. 2002, 20, 1427–1444. DOI: 10.1081/DRT-120005860.
  • Wentzel, M.; Fleckenstein, M.; Hofmann, T.; Militz, H. Relation of Chemical and Mechanical Properties of Eucalyptus Nitens Wood Thermally Modified in Open and Closed Systems. Wood Mater. Sci. Eng. 2019, 14, 165–173. DOI: 10.1080/17480272.2018.1450783.
  • Mayes, D.; Oksanen, O. ThermoWood® Handbook. Finnish Thermowood Association: Helsinki, 2003.
  • Čech, P.; Tesařová, D. Comparison of VOC Emissions from Natural (Untreated) Poplar Wood and Heat Treated Wood. Ann. WULS -SGGW, Wood Technol. 2015, 90, 23–28.
  • Jones, D.; Sandberg, D.; Goli, G.; Todaro, L. Wood Modification in Europe: A State-of-the-Art about Processes. products and Applications. Firenze University Press: Florence, 2019. DOI: 10.36253/978-88-6453-970-6.
  • Pohleven, J.; Burnard, M. D.; Kutnar, A. Volatile Organic Compounds Emitted from Untreated and Thermally Modified Wood-a Review. WFS 2019, 51, 231–254. DOI: 10.22382/wfs-2019-023.
  • Risholm-Sundman, M.; Lundgren, M.; Vestin, E.; Herder, P. Emissions of Acetic Acid and Other Volatile Organic Compounds from Different Species of Solid Wood. Holz Als Roh-Und Werkstoff 1998, 56, 125–129. DOI: 10.1007/s001070050282.
  • Kačík, F.; Veľková, V.; Šmíra, P.; Nasswettrová, A.; Kačíková, D.; Reinprecht, L. Release of Terpenes from Fir Wood during Its Long-Term Use and in Thermal Treatment. Molecules 2012, 17, 9990–9999. DOI: 10.3390/molecules17089990.
  • Duval, C. J.; Sok, N.; Laroche, J.; Gourrat, K.; Prida, A.; Lequin, S.; Chassagne, D.; Gougeon, R. D. Dry vs Soaked Wood: Modulating the Volatile Extractible Fraction of Oak Wood by Heat Treatments. Food Chem. 2013, 138, 270–277. DOI: 10.1016/j.foodchem.2012.09.117.
  • Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. Color Change and Emission of Volatile Organic Compounds from Scots Pine Exposed to Heat and Vacuum-Heat Treatment. J. Build. Eng. 2019, 26, 100918–100924. DOI: 10.1016/j.jobe.2019.100918.
  • Peris, M.; Escuder-Gilabert, L. A 21st Century Technique for Food Control: Electronic Noses. Anal. Chim. Acta 2009, 638, 1–15. DOI: 10.1016/j.aca.2009.02.009.
  • Wilson, A. D.; Baietto, M. Applications and Advances in Electronic-Nose Technologies. Sensors (Basel) 2009, 9, 5099–5148. DOI: 10.3390/s90705099.
  • Ghasemi-Varnamkhasti, M.; Mohtasebi, S. S.; Rodriguez-Mendez, M. L.; Lozano, J.; Razavi, S. H.; Ahmadi, H. Potential Application of Electronic Nose Technology in Brewery. Trends Food Sci. Technol. 2011, 22, 165–174. DOI: 10.1016/j.tifs.2010.12.005.
  • Baietto, M.; Wilson, A. D.; Bassi, D.; Ferrini, F. Evaluation of Three Electronic Noses for Detecting Incipient Wood Decay. Sensors (Basel) 2010, 10, 1062–1092. DOI: 10.3390/s100201062.
  • Baietto, M.; Pozzi, L.; Wilson, A. D.; Bassi, D. Evaluation of a Portable Mos Electronic Nose to Detect Root Rots in Shade Tree Species. Comput. Electron. Agric. 2013, 96, 117–125. DOI: 10.1016/j.compag.2013.05.002.
  • Paczkowski, S.; Jaeger, D.; Pelz, S. Semi-Conductor Metal Oxide Gas Sensors for Online Monitoring of Oak Wood VOC Emissions during Drying. Dry. Technol. 2019, 37, 1081–1086. DOI: 10.1080/07373937.2018.1484757.
  • Sun, F.; Wu, Z.; Chen, Y.; Li, J.; He, S.; Bai, R. Analysis of Odors from Thermally Modified Bamboo Assessed by an Electronic Nose. Build. Environ. 2018, 144, 386–391. DOI: 10.1016/j.buildenv.2018.08.057.
  • Milota, M.; Mosher, P. Emissions of Hazardous Air Pollutants from Lumber Drying. For. Prod. J. 2008, 58, 50–55.
  • Espinoza, O.; Bond, B. Vacuum Drying of wood-State of the Art. Curr. For. Rep. 2016, 2, 223–235. DOI: 10.1007/s40725-016-0045-9.
  • Savand-Roumi, E.; Mohtasebi, S. S.; Rafiee, S.; Ghanavati, H.; Khoshnevisan, B. Introducing New Monitoring Indices from the Headspace of Biogas Digester via e-Nose: A Case Study. Measurement 2022, 190, 110769–110778. DOI: 10.1016/j.measurement.2022.110769.
  • Knudsen, H. N.; Kjaer, U. D.; Nielsen, P. A.; Wolkoff, P. Sensory and Chemical Characterization of VOC Emissions from Building Products: Impact of Concentration and Air Velocity. Atmos. Environ. 1999, 33, 1217–1230. DOI: 10.1016/S1352-2310(98)00278-7.
  • Bajer, T.; Šulc, J.; Ventura, K.; Bajerová, P. Volatile Compounds Fingerprinting of Larch Tree Samples for Siberian and European Larch Distinction. Eur. J. Wood Prod. 2020, 78, 393–402. DOI: 10.1007/s00107-020-01498-w.
  • Keey, R. B.; Langrish, T. A.; Walker, J. C. Kiln-Drying of Lumber. Springer: Berlin, 2000. DOI: 10.1007/978-3-642-59653-7.
  • Pang, S. Emissions from Kiln Drying of Pinus Radiata Timber: Analysis, Recovery, and Treatment. Dry. Technol. 2012, 30, 1099–1104. DOI: 10.1080/07373937.2012.685673.
  • Falk, A.; Löf, A.; Hagberg, M.; Hjelm, E. W.; Wang, Z. Human Exposure to 3-Carene by Inhalation: toxicokinetics, Effects on Pulmonary Function and Occurrence of Irritative and CNS Symptoms. Toxicol. Appl. Pharmacol. 1991, 110, 198–205. DOI: 10.1016/S0041-008X(05)80002-X.
  • Ioannidis, K.; Melliou, E.; Magiatis, P. High-Throughput 1H-Nuclear Magnetic Resonance-Based Screening for the Identification and Quantification of Heartwood Diterpenic Acids in Four Black Pine (Pinus Nigra Arn.) Marginal Provenances in Greece. Molecules 2019, 24, 3603–3614. DOI: 10.3390/molecules24193603.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.