Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 5
502
Views
4
CrossRef citations to date
0
Altmetric
Research Articles

Recent progress in solar wood drying: An updated review

, , ORCID Icon & ORCID Icon
Pages 605-627 | Received 29 Mar 2022, Accepted 08 Aug 2022, Published online: 22 Aug 2022

References

  • Sattar, M. A. Solar Drying of Timber - A Review. Holz Als Roh-Und Werkstoff 1993, 51, 409–416. DOI: 10.1007/BF02628239.
  • Zhao, J.; Fu, Z.; Jia, X.; Cai, Y. Modeling Conventional Drying of Wood: Inclusion of a Moving Evaporation Interface. Dry. Technol. 2016, 34, 530–538. DOI: 10.1080/07373937.2015.1060999.
  • Khouya, A. Energy Analysis of A Combined Solar Wood Drying System. Sol. Energy 2022, 231, 270–282. DOI: 10.1016/j.solener.2021.11.068.
  • Lamrani, B.; Kuznik, F.; Ajbar, A.; Boumaza, M. Energy Analysis and Economic Feasibility of Wood Dryers Integrated with Heat Recovery Unit and Solar Air Heaters in Cold and Hot Climates. Energy 2021, 228, 120598. DOI: 10.1016/j.energy.2021.120598.
  • Bekkioui, N. Performance Comparison and Economic Analysis of Three Solar Dryer Designs for Wood Using a Numerical Simulation. Renew. Energy 2021, 164, 815–823. DOI: 10.1016/j.renene.2020.09.126.
  • Simo-Tagne, M.; Zoulalian, A.; Rémond, R.; Rogaume, Y. Mathematical Modelling and Numerical Simulation of a Simple Solar Dryer for Tropical Wood Using a Collector. Appl. Therm. Eng 2018, 131, 356–369. DOI: 10.1016/j.applthermaleng.2017.12.014.
  • Meng, Y.; Chen, G.; Hong, G.; Wang, M.; Gao, J.; Chen, Y. Energy Efficiency Performance Enhancement of Industrial Conventional Wood Drying Kiln by Adding Forced Ventilation and Waste Heat Recovery System: A Comparative Study. Maderas, Cienc. Tecnol. 2019, 21, 0–558. DOI: 10.4067/S0718-221X2019005000410.
  • Perea-Moreno, A. J.; Juaidi, A.; Manzano-Agugliaro, F. Solar Greenhouse Dryer System for Wood Chips Improvement as Biofuel. J. Clean. Prod. 2016, 135, 1233–1241. DOI: 10.1016/j.jclepro.2016.07.036.
  • Solar Wood Drying. https://www.builditsolar.com/Projects/WoodDrying/wood_kiln.htm.
  • Kerr, R. M.; Hiziroglu, S. Adding Value to OKLAHOMA Basics of Paper Manufacturing; 2016.
  • Solar Kiln. https://www.popularwoodworking.com/projects/solar-kiln/.
  • De Vore, J. B.; Denny, G. S.; Harper, T. S. A Commercially Viable Solar Wood Drying Kiln System. Dry. Technol. 1999, 17, 271–283. DOI: 10.1080/07373939908917529.
  • Lamrani, B.; Draoui, A. Thermal Performance and Economic Analysis of an Indirect Solar Dryer of Wood Integrated with Packed-Bed Thermal Energy Storage System: A Case Study of Solar Thermal Applications. Dry. Technol. 2020, 39(10), 1371–1388. DOI: 10.1080/07373937.2020.1750025.
  • Simo-Tagne, M.; Ndukwu, M. C.; Azese, M. N. Experimental Modelling of a Solar Dryer for Wood Fuel in Epinal (France). Modelling 2020, 1, 39–52. DOI: 10.3390/modelling1010003.
  • Chen, P. Y. S.; Helmer, W. A.; Resen, H. N. Experimental Studies of Solar and Solar-Dehumidification Lumber Drying. J. Energy 1981, 5, 130–131. DOI: 10.2514/3.62514.
  • Lamrani, B.; Khouya, A.; Draoui, A. Energy and Environmental Analysis of an Indirect Hybrid Solar Dryer of Wood Using TRNSYS Software. Sol. Energy 2019, 183, 132–145. DOI: 10.1016/j.solener.2019.03.014.
  • Ugwu, S. N.; Ugwuishiwu, B. O.; Ekechukwu, O. V.; Njoku, H.; Ani, A. O. Design, Construction, and Evaluation of a Mixed Mode Solar Kiln with Black-Painted Pebble Bed for Timber Seasoning in a Tropical Setting. Renew. Sustain. Energy Rev. 2015, 41, 1404–1412. DOI: 10.1016/j.rser.2014.09.033.
  • Lamrani, B.; Johannes, K.; Kuznik, F. Phase Change Materials Integrated into Building Walls: An Updated Review. Renew. Sustain. Energy Rev. 2021, 140, 110751. DOI: 10.1016/j.rser.2021.110751.
  • Luna, D.; Nadeau, J. P.; Jannot, Y. Model and Simulation of a Solar Kiln with Energy Storage. Renew. Energy 2010, 35, 2533–2542. DOI: 10.1016/j.renene.2010.03.024.
  • Kumar, S.; Kishankumar, V. S. Thermal Energy Storage for a Solar Wood Drying Kiln: Estimation of Energy Requirement. J. Indian Acad. Wood Sci. 2016, 13, 33–37. DOI: 10.1007/s13196-016-0162-x.
  • Khouya, A. Performance Assessment of a Heat Pump and a Concentrated Photovoltaic Thermal System during the Wood Drying Process. Appl. Therm. Eng. 2020, 180, 115923. DOI: 10.1016/j.applthermaleng.2020.115923.
  • Khouya, A. Modelling and Analysis of a Hybrid Solar Dryer for Woody Biomass. Energy 2021, 216, 119287. DOI: 10.1016/j.energy.2020.119287.
  • Feng, X.; He, Z.; Yi, S. Performance Study of a Wood Solar Drying Device with Latent Heat Storage System. AMR 2010, 160-162, 1032–1037. DOI: 10.4028/www.scientific.net/AMR.160-162.1032.
  • Lamrani, B.; Draoui, A. Modelling and Simulation of a Hybrid Solar-Electrical Dryer of Wood Integrated with Latent Heat Thermal Energy Storage System. Therm. Sci. Eng. Prog. 2020, 18, 100545. DOI: 10.1016/j.tsep.2020.100545.
  • Khouya, A.; Draoui, A. Computational Drying Model for Solar Kiln with Latent Heat Energy Storage: Case Studies of Thermal Application. Renew. Energy 2019, 130, 796–813. DOI: 10.1016/j.renene.2018.06.090.
  • Zadin, V.; Kasemägi, H.; Valdna, V.; Vigonski, S.; Veske, M.; Aabloo, A. Application of Multiphysics and Multiscale Simulations to Optimize Industrial Wood Drying Kilns. Appl. Math. Comput. 2015, 267, 465–475. DOI: 10.1016/j.amc.2015.01.104.
  • Simo-Tagne, M.; Rémond, R.; Rogaume, Y.; Zoulalian, A.; Bonoma, B. Modeling of Coupled Heat and Mass Transfer during Drying of Tropical Woods. Int. J. Therm. Sci. 2016, 109, 299–308. DOI: 10.1016/j.ijthermalsci.2016.06.012.
  • Silva, W. P.; Silva, L.; Silva, C.; Nascimento, P. L. Optimization and Simulation of Drying Processes Using Diffusion Models: Application to Wood Drying Using Forced Air at Low Temperature. Wood Sci. Technol. 2011, 45, 787–800. DOI: 10.1007/s00226-010-0391-x.
  • Yu, C. M. Numerical Analysis of Heat and Mass Transfer for Porous Materials; Tsinghua University Press: Beijing, China, 2011.
  • Mahmoud, S.; Tari, M.; Madhoushi, M. Kiln Drying Schedule Based on Diffusion Theory. World Sci. J. 2013, 1, 9–24.
  • Da Silva, W. P.; Da Silva, L. D.; De Oliveira Farias, V. S.; Da Silva E Silva, C. M. D. P.; De Ataíde, J. S. P. Three-Dimensional Numerical Analysis of Water Transfer in Wood: Determination of an Expression for the Effective Mass Diffusivity. Wood Sci .Technol. 2013, 47, 897–912. DOI: 10.1007/s00226-013-0544-9.
  • Da Silva, W. P.; Da Silva E Silva, C. M. D. P.; Rodrigues, A. F. Comparison between Two- and Three-Dimensional Diffusion Models to Describe Wood Drying at Low Temperature. Eur. J. Wood Prod. 2014, 72, 527–533. DOI: 10.1007/s00107-014-0812-x.
  • Konopka, D.; Kaliske, M. Transient Multi-FICKian Hygro-Mechanical Analysis of Wood. Comput. Struct. 2018, 197, 12–27. DOI: 10.1016/j.compstruc.2017.11.012.
  • Chiniforush, A. A.; Valipour, H.; Akbarnezhad, A. Water Vapor Diffusivity of Engineered Wood: Effect of Temperature and Moisture Content. Constr. Build. Mater. 2019, 224, 1040–1055. DOI: 10.1016/j.conbuildmat.2019.08.013.
  • López-Sosa, L. B.; Núñez-González, J.; Beltrán, A.; Morales-Máximo, M.; Morales-Sánchez, M.; Serrano-Medrano, M.; García, C. A. A New Methodology for the Development of Appropriate Technology: A Case Study for the Development of a Wood Solar Dryer. Sustain 2019, 11, 5620. DOI: 10.3390/su11205620.
  • Bekkioui, N.; Zoulalian, A.; Hakam, A.; Ez-Zahraouy, H. Using a Parametric Study to Analyse the Performance of Wood Solar Dryers with Glazed Walls. Maderas Cienc. y Tecnol. 2017, 19, 463–470. DOI: 10.4067/S0718-221X2017005000039.
  • Hasan, M.; Langrish, T. A. G. Numerical Simulation of a Solar Kiln Design for Drying Timber with Different Geographical and Climatic Conditions in Australia. Dry. Technol. 2014, 32, 1632–1639. DOI: 10.1080/07373937.2014.915556.
  • Hasan, M.; Langrish, T. A. G. Performance Comparison of Two Solar Kiln Designs for Wood Drying Using a Numerical Simulation. Dry. Technol. 2015, 33, 634–645. DOI: 10.1080/07373937.2014.968254.
  • Simo-Tagne, M.; Zoulalian, A.; Remond, R.; Rogaume, Y.; Bonoma, B. Modeling and Simulation of an Industrial Indirect Solar Dryer for Iroko Wood (Chlorphora Excelsa) in a Tropical Environment. Maderas, Cienc. Tecnol. 2017, 19, 0–112. DOI: 10.4067/S0718-221X2017005000009.
  • Simo-Tagne, M.; Bennamoun, L. Numerical Study of Timber Solar Drying with Application to Different Geographical and Climatic Conditions in Central Africa. Sol. Energy 2018, 170, 454–469. DOI: 10.1016/j.solener.2018.05.070.
  • Bekkioui, N.; Hakam, A.; Zoulalian, A.; Sesbou, A.; El kortbi, M. Solar Drying of Pine Lumber: Verification of a Mathematical Model. Maderas, Cienc. Tecnol. 2011, 13, 29–40. DOI: 10.4067/S0718-221X2011000100003.
  • Bekkioui, N.; El hakiki, S.; Rachadi, A.; Ez-Zahraouy, H. One-Year Simulation of a Solar Wood Dryer with Glazed Walls in a Moroccan Climate. Renew. Energy 2020, 155, 770–782. DOI: 10.1016/j.renene.2020.03.131.
  • Lamrani, B.; Draoui, A.; Kuznik, F. Thermal Performance and Environmental Assessment of a Hybrid Solar-Electrical Wood Dryer Integrated with Photovoltaic/Thermal Air Collector and Heat Recovery System. Sol. Energy 2021, 221, 60–74. DOI: 10.1016/j.solener.2021.04.035.
  • Martines-López, E.; Lira-Cortés, L. Application of the Luikov’s Model in the Moisture Content Measurement of Solid Materials by the Drying Method. Int. J. Thermophys. 2019, 40, 1–12. DOI: 10.1007/s10765-018-2461-5.
  • Kocaefe, D.; Younsi, R.; Poncsak, S.; Kocaefe, Y. Comparison of Different Models for the High-Temperature Heat-Treatment of Wood. Int. J. Therm. Sci. 2007, 46, 707–716. DOI: 10.1016/j.ijthermalsci.2006.09.001.
  • Haque, M. N.; Langrish, T. A. G. Assessment of the Actual Performance of an Industrial Solar Kiln for Drying Timber. Dry. Technol. 2005, 23, 1541–1553. DOI: 10.1081/DRT-200063544.
  • Simo-Tagne, M.; Bonoma, B.; Bennamoun, L.; Monkam, L.; Léonard, A.; Zoulalian, A.; Rogaume, Y. Modeling of Coupled Heat and Mass Transfer during Drying of Ebony Wood Using Indirect Natural Convection Solar Dryer. Dry. Technol. 2019, 37, 1863–1878. DOI: 10.1080/07373937.2018.1544144.
  • Lamrani, B.; Khouya, A.; Draoui, A. Numerical Modelling of a Latent Heat Thermal Energy Storage System Applied to Solar Drying Techniques. Int. J. Energy, Environ. Econ. 2018, 25, 153–167.
  • Khouya, A. Effect of Regeneration Heat and Energy Storage on Thermal Drying Performance in a Hardwood Solar Kiln. Renew. Energy 2020, 155, 783–799. DOI: 10.1016/j.renene.2020.03.178.
  • Zhao, J.; Cai, Y. A Comprehensive Mathematical Model of Heat and Moisture Transfer for Wood Convective Drying. Holzforschung 2017, 71, 425–435. DOI: 10.1515/hf-2016-0148.
  • Salem, T.; Perré, P.; Bouali, A.; Mougel, E.; Rémond, R. Experimental and Numerical Investigation of Intermittent Drying of Timber. Dry. Technol. 2017, 35, 593–605. DOI: 10.1080/07373937.2016.1195842.
  • Kowalski, S. J.; Pawłowski, A. Intermittent Drying of Initially Saturated Porous Materials. Chem. Eng. Sci. 2011, 66, 1893–1905. DOI: 10.1016/j.ces.2011.01.044.
  • Phonetip, K.; Brodie, G. I.; Ozarska, B.; Belleville, B. Drying Timber in a Solar Kiln Using an Intermittent Drying Schedule of Conventional Laboratory Kiln. Dry. Technol. 2019, 37, 1300–1312. DOI: 10.1080/07373937.2018.1496337.
  • Perré, P.; Keey, R. Drying of Wood: Principles and Practices. In Handbook of Industrial Drying, 4th ed.; CRC Press: Boca Raton, Florida, 2014; pp 822–872. DOI: 10.1201/b17208-44.
  • Hasan, M.; Alan, T.; Langrish, G. Time-Valued Net Energy Analysis of Solar Kilns for Wood Drying: A Solar Thermal Application. Energy 2016, 96, 415–426. DOI: 10.1016/j.energy.2015.11.081.
  • Tagne, M. S. Laboratory Simulation of Solar Dryer for Tropical Woods: The Case of Ebony (Diospyros Crassiflora). Int. J. Therm. Environ. Eng. 2015, 9, 1–6. DOI: 10.5383/ijtee.09.01.001.
  • Janjai, S.; Intawee, P.; Kaewkiew, J. A Solar Timber Drying System: Experimental Performance and System Modeling. Int. Energy J. 2010, 11, 131–144.
  • Simo-Tagne, M.; Ndi-Azese, M. Thermal, Economic, and Environmental Analysis of a Novel Solar Dryer for Firewood in Various Temperate and Tropical Climates. Sol. Energy 2021, 226, 348–364. DOI: 10.1016/j.solener.2021.08.060.
  • Hughes, B. R.; Oates, M. Performance Investigation of a Passive Solar-Assisted Kiln in the United Kingdom. Sol. Energy 2011, 85, 1488–1498. DOI: 10.1016/j.solener.2011.04.003.
  • Owoyemi, J. M.; Oyebamiji, W. O.; Aladejana, J. T. Drying Characteristics of Three Selected Nigerian Indigenous Wood Species Using Solar Kiln Dryer and Air Drying Shed. Am. J. Sci. Technol. 2015, 2, 176–182.
  • Ogunsanwo, O. Y.; Amao-Onidundu, O. N. Selected Drying Characteristics of Plantation Grown Gmelina Arborea under an Experimental Solar Drying Kiln. J. Agric. Soc. Res. 2011, 11, 608–613.
  • Phonetip, K.; Ozarska, B.; Harris, G.; Belleville, B.; Brodie, G. I. Quality Assessment of the Drying Process for Eucalyptus Delegatensis Timber Using Greenhouse Solar Drying Technology. Eur. J. Wood Prod. 2019, 77, 57–62. DOI: 10.1007/s00107-018-1364-2.
  • Phonetip, K.; Boupha, L.; Phanouvong, B.; Sichaluene, O.; Khammanivong, K.; Bouaphavong, D. Drying a Standing Teak Tree Using a Solar Kiln Drying Method. Walailak J. Sci. Technol. 2021, 18, 1–7. DOI: 10.48048/wjst.2021.9384.
  • Langrish, T. A. G. Comparing Continuous and Cyclic Drying Schedules for Processing Hardwood Timber: The Importance of Mechanosorptive Strain. Dry. Technol. 2013, 31, 1091–1098. DOI: 10.1080/07373937.2013.769449.
  • Kumar, B.; Szepesi, L. G.; Szamosi, Z. Design and Development of Natural Convective Solar Dryer. MDT 2021, 11, 144–150. DOI: 10.35925/j.multi.2021.4.18.
  • S. N.; Ugwu, Z.; Uduji, O. A.; Nwoke, E. A.; Echiegu, B. O.; Ugwuishiwu. Engineering Properties of Wood under Different Drying Methods. Global J. Eng. Tech. Adv. 2021, 7, 118–114. DOI: 10.30574/gjeta.2021.7.3.0082..
  • Raitila, J.; Tsupari, E. Feasibility of Solar-Enhanced Drying of Woody Biomass. Bioenerg. Res. 2020, 13, 210–221. DOI: 10.1007/s12155-019-10048-z.
  • Koga, S.; Kanayama, K.; Tsuchihashi, H.; Baba, H.; Sugawara, T. Drying on the Board- And Boxed Heart Squares-Larch Lumbers within an Opaque Solar Drying House Covered by a Composite Surface. Energy Procedia 2014, 57, 2966–2975. DOI: 10.1016/j.egypro.2014.10.332.
  • Loiola, P. L.; Juízo, C. G. F.; Marchesan, R.; Klitzke, R. J.; Rocha, M. P. da. Drying of Wood from Mimosa Scabrella, Eucalyptus Dunnii and Tectona Grandis in Solar Kiln, in South Brazil. Aust. J. Basic Appl. Sci. 2015, 9, 445–453.
  • Huan, L.; GuiFu, W.; ZhengBin, H.; SongLin, Y. Performance Study on Wood Solar Dryer Combined with Solar Photovoltaic-Thermal Generator. J. For. 2016, 3, 27–32.
  • Stokes, S. Solar Drying Device and Method for Drying. US4490926A, 1985.
  • Policena, R.; Jorge, A. R. M. Solar Energy Drying Equipment. BR102017005749A2, 2017.
  • Inventatori, N. Wood Material Dryer with Solar Pre-Heating. RO130702A0, 2015.
  • Haijun, F.; Wenliang, L.; Jing, Y. Energy-Saving Timber Drying Device for Furniture Production. CN212645108U,2020.
  • Renjin, L. Utilize Wood Drying Device of Solar Energy. CN205027049U, 2015.
  • Pinyu, X.; Hualing, S. A Kind of Energy-Saving Building Material Drying Process Device. CN108826896A, 2018.
  • Byeong-il, A. Seung-jae Kwan-seok, K. Hybrid Wood Chips Drying Apparatus. KR20210001621U, 2020.
  • Guifu, W.; Huan, L. Fully-Solar Dryer. CN203857752U, 2011.
  • Ying, Z.; Jiaheng.; Z.; ying. Solar Energy Wood DrCase. CN205209198U, 2015.
  • Feng, J. Timber Drying Device for Furniture. CN110779284A, 2019.
  • Hayashi, T. Lumber Dryer Utilizing Geothermal Heat and Solar Heat. JP2014077574A, 2012.
  • Zhouwei, F. Solar Greenhouse for Wood Stoving. CN104913600A, 2015.
  • Killar, M. Apparatus for Drying Objects, Especially Timber. CZ22237U1, 2011.
  • Ronglei, Z. Solar Timber Drying Equipment. CN103673520A, 2012.
  • Jinhui, L. Wood Working Drying Device. CN212006492U, 2020.
  • Zhengbin, H.; Songlin, Y.; Jing, Q.; Lijie, Q.; Zhenyu, W. Drying Device and Method for Continuously Drying Wood by Using Solar Energy. CN111637698A, 2019.
  • Jianrong, C.; Qiang, Z. Wood Dryer. CN105716388A, 2016.
  • Haiyan, L. A Kind of Wood Drying Apparatus. CN107328173A, 2017.
  • Kwon, Y.; In-ho, Y.; Jung, J. The Multipurpose Dryer Which Uses a Solar Water-Heating Systems. KR101135555B1, 2012.
  • GUTIERREZ, K. E. I.; Ramirez, J. A. O.; Milena, D. Modular Collapsible Solar Dryer for Multipurpose Drying. WO2017027813A1, 2016.
  • Adhikari, S.; Ozarska, B. Minimizing Environmental Impacts of Timber Products through the Production Process “from Sawmill to Final Products. Environ. Syst. Res. 2018, 7, 1–15. DOI: 10.1186/s40068-018-0109-x.
  • Goreshnev, M. A.; Kazarin, A. N.; Lopatin, V. V.; Sekisov, F. G.; Smerdov, O. V. Combined Timber Drying Method. J. Eng. Phys. Thermophys. 2013, 86, 336–339. DOI: 10.1007/s10891-013-0838-7.
  • Anderson, J. O.; Toffolo, A. Improving Energy Efficiency of Sawmill Industrial Sites by Integration with Pellet and CHP Plants. Appl. Energy 2013, 111, 791–800. DOI: 10.1016/j.apenergy.2013.05.066.
  • Raji Energy Cell. Solar Wood Dryer. https://www.indiamart.com/radha-energycell. (accessed Dec 13, 2021).
  • Rudra Solar Energy. Solar Wood Dryer. https://www.rudrasolarenergy.in. (accessed Dec 4, 2021).
  • Kaushal Engineerings. Wood Solar Seasoning Chamber/Plant. https://www.indiamart.com/kaushalengineerings. (accessed Dec 12, 2021).
  • Wood-Mizer. KS50 Solar Wood Drying Kiln Kit. https://woodmizer.com.au/ks50-solar-dry-kiln-kit. (accessed Dec 4, 2021).
  • Hangzhou Tech Drying Equipment Co., Ltd. solar wood kiln, 2020.
  • Solarkilns. T3 Large Solarkiln. https://solarkilns.com/t3-large-solarkiln/. (accessed Dec 12, 2021).
  • Solar Dryers Australia Pty LTD. Solar drying Kilns http://www.solardry.com.au/solardry/index.html. (accessed Dec 12, 2021).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.