Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 5
122
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The use of steam dryer with heat recovery to decrease the minimum exhaust flue gas temperature and increase the net efficiency of thermal power plant

Pages 720-734 | Received 16 Jun 2022, Accepted 11 Aug 2022, Published online: 27 Aug 2022

References

  • El-Wakil, M. M. Powerplant Technology, 8th ed.; McGraw-Hill: New York, 1984.
  • Liu, M.; Xu, C.; Han, X.; Liu, R.; Qin, Y.; Yan, J. Integration of Evaporative Dryers into Lignite-Fired Power Plants: A Review. Drying Technol. 2020, 38, 1996–2014. DOI: 10.1080/07373937.2019.1606824.
  • Romdhana, H.; Bonazzi, C.; Esteban-Decloux, M. Superheated Steam Drying: An Overview of Pilot and Industrial Dryers with a Focus on Energy Efficiency. Drying Technol. 2015, 33, 1255–1274. DOI: 10.1080/07373937.2015.1025139.
  • Bjork, H.; Rasmuson, A. Life Cycle Assessment of an Energy-System with a Superheated Steam Dryer Integrated in a Local District Heat and Power Plant. Drying Technol. 1999, 17, 1121–1134. DOI: 10.1080/07373939908917598.
  • Kakaras, E.; Ahladas, P.; Syrmopoulos, S. Computer Simulation Studies for the Integration of an External Dryer into a Greek Lignite-Fired Power Plant. Fuel 2002, 81, 583–593. DOI: 10.1016/S0016-2361(01)00146-6.
  • Liu, M.; Yan, J.; Bai, B.; Chong, D.; Guo, X.; Xiao, F. Theoretical Study and Case Analysis for a Predried Lignite-Fired Power System. Drying Technol. 2011, 29, 1219–1229. [Database] DOI: 10.1080/07373937.2011.582559.
  • Liu, M.; Yan, J.; Chong, D.; Liu, J.; Wang, J. Thermodynamic Analysis of Pre-Drying Methods for Pre-Dried Lignite-Fired Power Plant. Energy 2013, 49, 107–118. DOI: 10.1016/j.energy.2012.10.026.
  • Liu, M.; Wang, J.; Yan, J.; Chong, D.; Liu, J. A Combined-Type Fluid-Bed Dryer Suitable for Integration within a Lignite-Fired Power Plant: system Design and Thermodynamic Analysis. Drying Technol. 2014, 32, 902–909. DOI: 10.1080/07373937.2013.875036.
  • Atsonios, K.; Violidakis, I.; Agraniotis, M.; Grammelis, P.; Nikolopoulos, N.; Kakaras, E. Thermodynamic Analysis and Comparison of Retrofitting Pre-Drying Concepts at Existing Lignite Power Plants. Appl. Therm. Eng. 2015, 74, 165–173. DOI: 10.1016/j.applthermaleng.2013.11.007.
  • Liu, M.; Yan, J.; Wang, J.; Chong, D.; Liu, J. Thermodynamic Analysis on a Lignite-Fired Power System Integrated with a Steam Dryer: investigation on Energy Supply System of the Dryer. Drying Technol. 2015, 33, 1510–1521. DOI: 10.1080/07373937.2015.1025907.
  • Xu, C.; Xu, G.; Zhao, S.; Zhou, L.; Yang, Y.; Zhang, D. An Improved Configuration of Lignite Pre-Drying Using a Supplementary Steam Cycle in a Lignite Fired Supercritical Power Plant. Appl. Energy 2015, 160, 882–891. DOI: 10.1016/j.apenergy.2015.01.083.
  • Xu, G.; Dong, W.; Xu, C.; Liu, Q.; Yang, Y. An Integrated Lignite Pre-Drying System Using Steam Bleeds and Exhaust Flue Gas in a 600 MW Power Plant. Appl. Therm. Eng. 2016, 107, 1145–1157. DOI: 10.1016/j.applthermaleng.2016.07.078.
  • Liu, M.; Li, G.; Han, X.; Qin, Y.; Zhai, M.; Yan, J. Energy and Exergy Analyses of a Lignite-Fired Power Plant Integrated with a Steam Dryer at Rated and Partial Loads. Drying Technol. 2017, 35, 203–217. DOI: 10.1080/07373937.2016.1166438.
  • Chen, H.; Qi, Z.; Chen, Q.; Wu, Y.; Xu, G.; Yang, Y. Modified High Back-Pressure Heating System Integrated with Raw Coal Pre-Drying in Combined Heat and Power Unit. Energies 2018, 11, 2487. DOI: 10.3390/en11092487.
  • Zhu, X.; Wang, C.; Wang, L.; Che, D. Thermodynamic and Economic Analysis on a Two-Stage Predrying Lignite-Fueled Power Plant. Drying Technol. 2019, 37, 26–37. DOI: 10.1080/07373937.2018.1436066.
  • Tang, C.; Wang, L.; Zhu, X.; Wang, C.; Liu, Y.; Che, D. Investigation on a New Lignite Predrying Power Generation System Combined with a Front Air Heater. Drying Technol. 2020, 38, 1584–1596. DOI: 10.1080/07373937.2019.1650062.
  • Liu, R.; Liu, M.; Yan, J. Techno-Economic Analysis of the Lignite-Fired Power Plant Integrated with a Steam or Flue Gas Dryer. Drying Technol. 2021, 39, 1271–1284. DOI: 10.1080/07373937.2020.1742148.
  • Guo, X.; Liu, M.; Lai, F.; Chong, D.; Yan, J.; Xiao, F. Theoretical Study and Case Analysis of a Predried Lignite-Fired Power Plant with the Waste Heat Recovery System. Drying Technol. 2012, 30, 425–434. DOI: 10.1080/07373937.2011.645981.
  • Liu, M.; Qin, Y.; Yan, H.; Han, X.; Chong, D. Energy and Water Conservation at Lignite-Fired Power Plants Using Drying and Water Recovery Technologies. Energy Convers. Manage. 2015, 105, 118–126. DOI: 10.1016/j.enconman.2015.07.069.
  • Zhu, X.; Wang, C.; Tang, C.; Che, D. Energy Analysis of a Lignite Predrying Power Generation System with an Efficient Waste Heat Recovery System. Drying Technol. 2017, 35, 1492–1505. DOI: 10.1080/07373937.2016.1256891.
  • Qin, Y.; Fu, H.; Wang, J.; Liu, M.; Yan, J. Waste Heat and Water Recovery Characteristics of Heat Exchangers for Dryer Exhaust. Drying Technol. 2018, 36, 709–722. DOI: 10.1080/07373937.2017.1351451.
  • Han, Y.; Xu, G.; Zheng, Q.; Xu, C.; Hu, Y.; Yang, Y.; Lei, J. New Heat Integration System with Bypass Flue Based on the Rational Utilization of Low-Grade Extraction Steam in a Coal-Fired Power Plant. Appl. Therm. Eng. 2017, 113, 460–471. DOI: 10.1016/j.applthermaleng.2016.11.056.
  • Chantasiriwan, S. The Improvement of Energy Efficiency of Cogeneration System by Replacing Desuperheater with Steam–Air Preheater. Energy Rep. 2020, 6, 752–757. DOI: 10.1016/j.egyr.2020.11.135.
  • Wang, D.; Li, H.; Wang, C.; Zhou, Y.; Li, X.; Yang, M. Thermodynamic Analysis of Coal-Fired Power Plant Based on the Feedwater Heater Drainage-Air Preheating System. Appl. Therm. Eng. 2021, 185, 116420. DOI: 10.1016/j.applthermaleng.2020.116420.
  • Luo, X.; Zhang, B.; Chen, Y.; Mo, S. Modeling and Optimization of a Utility System Containing Multiple Extractions Steam Turbines. Energy 2011, 36, 3501–3512. DOI: 10.1016/j.energy.2011.03.056.
  • Gnielinski, V. New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow. Int. Chem. Eng. 1976, 16, 359–368.
  • Kakac, S.; Liu, H.; Pramuanjaroenkij, A. Heat Exchangers Selection, Rating, and Thermal Design, 3rd ed.; CRC Press: Boca Raton, 2012.
  • Chantasiriwan, S. Optimum Installation of Flue Gas Dryer and Additional Air Heater to Increase the Efficiency of Coal-Fired Utility Boiler. Energy 2021, 221, 119769. DOI: 10.1016/j.energy.2021.119769.
  • Verhoff, F. H.; Banchero, J. T. Predicting Dew Points of Flue Gases. Chem. Eng. Prog. 1974, 70, 71–72.
  • Hatzilyberis, K. S.; Androutsopoulos, G. P.; Salmas, C. E. Indirect Thermal Drying of Lignite: Design Aspects of a Rotary Dryer. Drying Technol. 2000, 18, 2009–2049. DOI: 10.1080/07373930008917824.
  • Hoehne, O.; Lechner, S.; Schreiber, M.; Krautz, H. J. Drying of Lignite in a Pressurized Steam Fluidized Bed-Theory and Experiments. Drying Technol. 2009, 28, 5–19. DOI: 10.1080/07373930903423491.
  • Karthikeyan, M.; Kuma, J. V. M.; Chew, S. H.; David Low, N. Y. Factors Affecting Quality of Dewatered Low Rank Coals. Drying Technol. 2007, 25, 1601–1611. DOI: 10.1080/07373930701590608.
  • Chantasiriwan, S. Improving Energy Efficiency of Cogeneration System in Cane Sugar Industry by Steam Dryer. Chem. Eng. Trans. 2021, 87, 511–516.
  • Sztabert, Z. T.; Kudra, T. Cost-Estimation Methods for Drying. In Handbook of Industrial Drying, 3rd ed.; Mujumdar A.S., Eds.; CRC Press: Boca Raton, 2007.
  • Shamoushaki, M. T.; Niknam, P. H.; Talluri, L.; Manfrida, G.; D, F. Development of Cost Correlations for the Economic Assessment of Power Plant Equipment. Energies 2021, 14, 2665. DOI: 10.3390/en14092665.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.