537
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Dehydrated fruits and vegetables using low temperature drying technologies and their application in functional beverages: a review

, , , &
Pages 868-889 | Received 22 Jul 2022, Accepted 21 Aug 2022, Published online: 05 Sep 2022

References

  • Liu, X.; Le Bourvellec, C.; Yu, J.; Zhao, L.; Wang, K.; Tao, Y.; Renard, C. M. G. C.; Hu, Z. Trends and Challenges on Fruit and Vegetable Processing: Insights into Sustainable, Traceable, Precise, Healthy, Intelligent, Personalized and Local Innovative Food Products. Trends in Food Sci. Technol. 2022, 125, 12–25. DOI: 10.1016/j.tifs.2022.04.016.
  • Ruiz Rodríguez, L. G.; Zamora Gasga, V. M.; Pescuma, M.; Van Nieuwenhove, C.; Mozzi, F.; Sánchez Burgos, J. A. Fruits and Fruit by-Products as Sources of Bioactive Compounds. Benefits and Trends of Lactic Acid Fermentation in the Development of Novel Fruit-Based Functional Beverages. Food Res. Int. 2021, 140, 109854. DOI: 10.1016/j.foodres.2020.109854.
  • Nazir, M.; Arif, S.; Khan, R. S.; Nazir, W.; Khalid, N.; Maqsood, S. Opportunities and Challenges for Functional and Medicinal Beverages: Current and Future Trends. Trends in Food Sci. Technol. 2019, 88, 513–526. DOI: 10.1016/j.tifs.2019.04.011.
  • Chitrakar, B.; Zhang, M.; Bhandari, B. Improvement Strategies of Food Supply Chain through Novel Food Processing Technologies during Covid-19 Pandemic. Food Control 2021, 125, 108010. DOI: 10.1016/j.foodcont.2021.108010.
  • Dey, G.; Sireswar, S. Tailoring Functional Beverages from Fruits and Vegetables for Specific Disease Conditions-Are We There yet? Crit. Rev. Food Sci. Nutr. 2021, 61, 2034–2046. DOI: http://doi.org/10.1080/10408398.2020.1769021.
  • Rocha, M. A. M.; Coimbra, M. A.; Nunes, C. Applications of Chitosan and Their Derivatives in Beverages: A Critical Review. Curr. Opin. Food Sci. 2017, 15, 61–69. DOI: 10.1016/j.cofs.2017.06.008.
  • Valduga, A. T.; Gonçalves, I. L.; Magri, E.; Delalibera Finzer, J. R. Chemistry, Pharmacology and New Trends in Traditional Functional and Medicinal Beverages. Food Res. Int. 2019, 120, 478–503. DOI: 10.1016/j.foodres.2018.10.091.
  • Huang, Y.; Zhang, M.; Pattarapon, P. Reducing Freeze-Thaw Drip Loss of Mixed Vegetable Gel by 3d Printing Porosity. Innovative Food Sci. Emerg. Technol. 2022, 75, 102893. DOI: 10.1016/j.ifset.2021.102893.
  • Jin, W.; Mujumdar, A. S.; Zhang, M.; Shi, W. Novel Drying Techniques for Spices and Herbs: A Review. Food Eng. Rev. 2018, 10, 34–45. DOI: 10.1007/s12393-017-9165-7.
  • Sun, Q.; Zhang, M.; Mujumdar, A. S. Recent Developments of Artificial Intelligence in Drying of Fresh Food: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 2258–2275.
  • Li, L.; Zhang, M.; Bhandari, B.; Zhou, L. Lf-Nmr Online Detection of Water Dynamics in Apple Cubes during Microwave Vacuum Drying. Drying Technol. 2018, 36, 2006–2015. DOI: 10.1080/07373937.2018.1432643.
  • Li, L.; Zhang, M.; Yang, P. Suitability of Lf-Nmr to Analysis Water State and Predict Dielectric Properties of Chinese Yam during Microwave Vacuum Drying. LWT 2019, 105, 257–264. DOI: 10.1016/j.lwt.2019.02.017.
  • Liu, W.; Zhang, M.; Bhandari, B.; Yu, D. A Novel Combination of Lf-Nmr and Nir to Intelligent Control in Pulse-Spouted Microwave Freeze Drying of Blueberry. LWT 2021, 137, 110455. DOI: 10.1016/j.lwt.2020.110455.
  • Li, Y.; Wang, X.; Wu, Z.; Wan, N.; Yang, M. Dehydration of Hawthorn Fruit Juices Using Ultrasound-Assisted Vacuum Drying. Ultrason. Sonochem. 2020, 68, 105219. DOI: 10.1016/j.ultsonch.2020.105219.
  • Khaing Hnin, K.; Zhang, M.; Mujumdar, A. S.; Zhu, Y. Emerging Food Drying Technologies with Energy-Saving Characteristics: A Review. Drying Technol. 2019, 37, 1465–1480. DOI: http://doi.org/10.1080/07373937.2018.1510417.
  • Deng, L. Z.; Mujumdar, A. S.; Zhang, Q.; Yang, X. H.; Wang, J.; Zheng, Z. A.; Gao, Z. J.; Xiao, H. W. Chemical and Physical Pretreatments of Fruits and Vegetables: Effects on Drying Characteristics and Quality Attributes - a Comprehensive Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1408–1432. DOI: http://doi.org/10.1080/10408398.2017.1409192.
  • Xiao-Fei, W.; Min, Z.; Arun, S. M.; Chao-Hui, Y. Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatment on the Infrared Drying of Pakchoi Stems. Drying Technol. 2020, 38, 2015–2026. DOI: http://doi.org/10.1080/07373937.2019.1608232.
  • Nieto, A. B.; Vicente, S.; Hodara, K.; Castro, M. A.; Alzamora, S. M. Osmotic Dehydration of Apple: Influence of Sugar and Water Activity on Tissue Structure, Rheological Properties and Water Mobility. J. Food Eng. 2013, 119, 104–114. DOI: 10.1016/j.jfoodeng.2013.04.032.
  • Chandra, S.; Kumari, D. Recent Development in Osmotic Dehydration of Fruit and Vegetables: A Review. Crit. Rev. Food Sci. Nutr. 2015, 55, 552–561. DOI: http://doi.org/10.1080/10408398.2012.664830.
  • Gekas, V.; Gonzalez, C.; Sereno, A.; Chiralt, A.; Fito, P. Mass Transfer Properties of Osmotic Solutions. I. Water Activity and Osmotic Pressure. Int. J. Food Prop. 1998, 1, 95–112. DOI: http://doi.org/10.1080/10942919809524570.
  • Ma, Y.; Yi, J.; Bi, J.; Zhao, Y.; Li, X.; Wu, X.; Du, Q. Effect of Ultrasound on Mass Transfer Kinetics and Phenolic Compounds of Apple Cubes during Osmotic Dehydration. LWT 2021, 151, 112186. DOI: 10.1016/j.lwt.2021.112186.
  • Ciurzyńska, A.; Kowalska, H.; Czajkowska, K.; Lenart, A. Osmotic Dehydration in Production of Sustainable and Healthy Food. Trends in Food Sci. Technol. 2016, 50, 186–192. DOI: 10.1016/j.tifs.2016.01.017.
  • Dash, K. K.; Balasubramaniam, V. Effect of High Pressure on Mass Transfer Kinetics of Granny Smith Apple. Drying Technol. 2018, 36, 1631–1641. DOI: 10.1080/07373937.2017.1421218.
  • Amami, E.; Khezami, L.; Vorobiev, E.; Kechaou, N. Effect of Pulsed Electric Field and Osmotic Dehydration Pretreatment on the Convective Drying of Carrot Tissue. Drying Technol. 2008, 26, 231–238. DOI: 10.1080/07373930701537294.
  • Liu, B.; Wang, B.; Wang, Y.; Chitrakar, B.; Zhang, M. Effect of Ultrasound Pretreatment on Physical, Bioactive, and Antioxidant Properties of Carrot Cubes after Centrifugal Dewatering. Drying Technol. 2021, 39, 1219–1230. DOI: 10.1080/07373937.2021.1874969.
  • de Jesus Junqueira, J. R.; Corrêa, J. L. G.; de Mendonça, K. S.; de Mello Júnior, R. E.; de Souza, A. U. Pulsed Vacuum Osmotic Dehydration of Beetroot, Carrot and Eggplant Slices: Effect of Vacuum Pressure on the Quality Parameters. Food Bioprocess Technol. 2018, 11, 1863–1875. DOI: 10.1007/s11947-018-2147-9.
  • Nadery Dehsheikh, F.; Taghian Dinani, S. Coating Pretreatment of Banana Slices Using Carboxymethyl Cellulose in an Ultrasonic System before Convective Drying. Ultrason. Sonochem. 2019, 52, 401–413. DOI: 10.1016/j.ultsonch.2018.12.018.
  • Neri, L.; Di Biase, L.; Sacchetti, G.; Di Mattia, C.; Santarelli, V.; Mastrocola, D.; Pittia, P. Use of Vacuum Impregnation for the Production of High Quality Fresh-Like Apple Products. J. Food Eng. 2016, 179, 98–108. DOI: 10.1016/j.jfoodeng.2016.02.002.
  • Lin, X.; Luo, C.; Chen, Y. Effects of Vacuum Impregnation with Sucrose Solution on Mango Tissue. J. Food Sci. 2016, 81, E1412–E1418. DOI: 10.1111/1750-3841.13309.
  • Lima, MMd.; Tribuzi, G.; Souza, JARd.; Souza, IGd.; Laurindo, J. B.; Carciofi, B. A. M. Vacuum Impregnation and Drying of Calcium-Fortified Pineapple Snacks. LWT - Food Sci. Technol. 2016, 72, 501–509. DOI: 10.1016/j.lwt.2016.05.016.
  • Moreno, J.; Gonzales, M.; Zúñiga, P.; Petzold, G.; Mella, K.; Muñoz, O. Ohmic Heating and Pulsed Vacuum Effect on Dehydration Processes and Polyphenol Component Retention of Osmodehydrated Blueberries (Cv. Tifblue). Innovative Food Sci. Emerg. Technol. 2016, 36, 112–119. DOI: 10.1016/j.ifset.2016.06.005.
  • Nowacka, M.; Tylewicz, U.; Laghi, L.; Dalla Rosa, M.; Witrowa-Rajchert, D. Effect of Ultrasound Treatment on the Water State in Kiwifruit during Osmotic Dehydration. Food Chem. 2014, 144, 18–25. DOI: 10.1016/j.foodchem.2013.05.129.
  • Bozkir, H.; Ergün, A. R.; Serdar, E.; Metin, G.; Baysal, T. Influence of Ultrasound and Osmotic Dehydration Pretreatments on Drying and Quality Properties of Persimmon Fruit. Ultrason Sonochem. 2019, 54, 135–141.
  • Oliveira, F. I. P.; Rodrigues, S.; Fernandes, F. A. N. Production of Low Calorie Malay Apples by Dual Stage Sugar Substitution with Stevia-Based Sweetener. Food Bioprod. Process. 2012, 90, 713–718. DOI: 10.1016/j.fbp.2012.02.002.
  • Li, L.; Zhang, M.; Wang, W. Ultrasound-Assisted Osmotic Dehydration Pretreatment before Pulsed Fluidized Bed Microwave Freeze-Drying (Pfbmfd) of Chinese Yam. Food Biosci. 2020, 35, 100548. DOI: 10.1016/j.fbio.2020.100548.
  • Luo, W.; Tappi, S.; Wang, C.; Yu, Y.; Zhu, S.; Rocculi, P. Study of the Effect of High Hydrostatic Pressure (Hhp) on the Osmotic Dehydration Mechanism and Kinetics of Wumei Fruit (Prunus Mume). Food Bioprocess Technol. 2018, 11, 2044–2054. DOI: http://doi.org/10.1007/s11947-018-2165-7.
  • Luo, W.; Tappi, S.; Wang, C.; Yu, Y.; Zhu, S.; Dalla Rosa, M.; Rocculi, P. Effect of High Hydrostatic Pressure (Hhp) on the Antioxidant and Volatile Properties of Candied Wumei Fruit (Prunus Mume) during Osmotic Dehydration. Food Bioprocess Technol. 2019, 12, 98–109. DOI: http://doi.org/10.1007/s11947-018-2196-0.
  • Dermesonlouoglou, E. K.; Angelikaki, F.; Giannakourou, M. C.; Katsaros, G. J.; Taoukis, P. S. Minimally Processed Fresh-Cut Peach and Apricot Snacks of Extended Shelf-Life by Combined Osmotic and High Pressure Processing. Food Bioprocess Technol. 2019, 12, 371–386. DOI: http://doi.org/10.1007/s11947-018-2215-1.
  • Dermesonlouoglou, E. K.; Andreou, V.; Alexandrakis, Z.; Katsaros, G. J.; Giannakourou, M. C.; Taoukis, P. S. The Hurdle Effect of Osmotic Pretreatment and High-Pressure Cold Pasteurisation on the Shelf-Life Extension of Fresh-Cut Tomatoes. Int. J. Food Sci. Technol. 2017, 52, 916–926. DOI: 10.1111/ijfs.13355.
  • Dermesonlouoglou, E. K.; Bimpilas, A.; Andreou, V.; Katsaros, G. J.; Giannakourou, M. C.; Taoukis, P. S. Process Optimization and Kinetic Modeling of Quality of Fresh-Cut Strawberry Cubes Pretreated by High Pressure and Osmosis. J. Food Process. Preserv. 2017, 41, e13137. DOI: 10.1111/jfpp.13137.
  • Dermesonlouoglou, E.; Chalkia, A.; Dimopoulos, G.; Taoukis, P. Combined Effect of Pulsed Electric Field and Osmotic Dehydration Pre-Treatments on Mass Transfer and Quality of Air Dried Goji Berry. Innovative Food Sci. Emerg. Technol. 2018, 49, 106–115. DOI: 10.1016/j.ifset.2018.08.003.
  • Yu, Y.; Jin, T. Z.; Fan, X.; Xu, Y. Osmotic Dehydration of Blueberries Pretreated with Pulsed Electric Fields: Effects on Dehydration Kinetics, and Microbiological and Nutritional Qualities. Drying Technol. 2017, 35, 1543–1551. DOI: http://doi.org/10.1080/07373937.2016.1260583.
  • Oliveira, G.; Tylewicz, U.; Dalla Rosa, M.; Andlid, T.; Alminger, M. Effects of Pulsed Electric Field-Assisted Osmotic Dehydration and Edible Coating on the Recovery of Anthocyanins from in Vitro Digested Berries. Foods 2019, 8, 505. DOI: http://doi.org/10.3390/foods8100505.
  • Qiu, L.; Zhang, M.; Tang, J.; Adhikari, B.; Cao, P. Innovative Technologies for Producing and Preserving Intermediate Moisture Foods: A Review. Food Res. Int. 2019, 116, 90–102. DOI: 10.1016/j.foodres.2018.12.055.
  • Feng, Y.; Yu, X.; Yagoub, A. E. A.; Xu, B.; Wu, B.; Zhang, L.; Zhou, C. Vacuum Pretreatment Coupled to Ultrasound Assisted Osmotic Dehydration as a Novel Method for Garlic Slices Dehydration. Ultrason. Sonochem. 2019, 50, 363–372. DOI: 10.1016/j.ultsonch.2018.09.038.
  • Ahmed, I.; Qazi, I. M.; Jamal, S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables. Innovative Food Sci. Emerg. Technol. 2016, 34, 29–43. DOI: http://doi.org/10.1016/j.ifset.2016.01.003.
  • de Mello, R. E.; Jr, Corrêa, J. L. G.; Lopes, F. J.; de Souza, A. U.; da Silva, K. C. R. Kinetics of the Pulsed Vacuum Osmotic Dehydration of Green Fig (Ficus Carica L. Heat Mass Transfer 2019, 55, 1685–1691. ) DOI: 10.1007/s00231-018-02559-w.
  • Chen, F.; Zhang, M.; Yang, C-h Application of Ultrasound Technology in Processing of Ready-to-Eat Fresh Food: A Review. Ultrason Sonochem. 2020, 63, 104953. DOI: 10.1016/j.ultsonch.2019.104953.
  • Fan, K.; Zhang, M.; Jiang, F. Ultrasound Treatment to Modified Atmospheric Packaged Fresh-Cut Cucumber: Influence on Microbial Inhibition and Storage Quality. Ultrason Sonochem. 2019, 54, 162–170. DOI: 10.1016/j.ultsonch.2019.02.003.
  • Prithani, R.; Dash, K. K. Mass Transfer Modelling in Ultrasound Assisted Osmotic Dehydration of Kiwi Fruit. Innovative Food Sci. Emerg. Technol. 2020, 64, 102407. DOI: 10.1016/j.ifset.2020.102407.
  • Muralidhara, H.; Ensminger, D.; Putnam, A. Acoustic Dewatering and Drying (Low and High Frequency): State of the Art Review. Drying Technol. 1985, 3, 529–566. DOI: 10.1080/07373938508916296.
  • de Mendonça, K. S.; Corrêa, J. L. G.; de Jesus Junqueira, J. R.; Pereira, M. C. d. A.; Vilela, M. B. Optimization of Osmotic Dehydration of Yacon Slices. Drying Technol. 2016, 34, 386–394. DOI: http://doi.org/10.1080/07373937.2015.1054511.
  • González-Pérez, J. E.; Ramírez-Corona, N.; López-Malo, A. Mass Transfer during Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non-Thermal Methods. Food Eng. Rev. 2021, 13, 344–374. DOI: http://doi.org/10.1007/s12393-020-09276-3.
  • Verma, D.; Kaushik, N.; Rao, P. S. Application of High Hydrostatic Pressure as a Pretreatment for Osmotic Dehydration of Banana Slices (Musa Cavendishii) Finish-Dried by Dehumidified Air Drying. Food Bioprocess Technol. 2014, 7, 1281–1297. DOI: http://doi.org/10.1007/s11947-013-1124-6.
  • Swami Hulle, N. R.; Rao, P. S. Effect of High Pressure Pretreatments on Structural and Dehydration Characteristics of Aloe Vera (Aloe Barbadensis Miller) Cubes. Drying Technol. 2016, 34, 105–118. DOI: 10.1080/07373937.2015.1037887.
  • Rodríguez-Roque, M. J.; De Ancos, B.; Sánchez-Vega, R.; Sánchez-Moreno, C.; Cano, M. P.; Elez-Martínez, P.; Martín-Belloso, O. Food Matrix and Processing Influence on Carotenoid Bioaccessibility and Lipophilic Antioxidant Activity of Fruit Juice-Based Beverages. Food Funct. 2016, 7, 380–389. DOI: http://doi.org/10.1039/c5fo01060h.
  • López-Gámez, G.; Elez-Martínez, P.; Martín-Belloso, O.; Soliva-Fortuny, R. Pulsed Electric Field Treatment Strategies to Increase Bioaccessibility of Phenolic and Carotenoid Compounds in Oil-Added Carrot Purees. Food Chem. 2021, 364, 130377. DOI: 10.1016/j.foodchem.2021.130377.
  • Arshad, R. N.; Abdul-Malek, Z.; Munir, A.; Buntat, Z.; Ahmad, M. H.; Jusoh, Y. M. M.; Bekhit, A. E.-D.; Roobab, U.; Manzoor, M. F.; Aadil, R. M. Electrical Systems for Pulsed Electric Field Applications in the Food Industry: An Engineering Perspective. Trends in Food Sci. Technol. 2020, 104, 1–13. DOI: 10.1016/j.tifs.2020.07.008.
  • Dermesonlouoglou, E.; Chalkia, A.; Taoukis, P. Application of Osmotic Dehydration to Improve the Quality of Dried Goji Berry. J. Food Eng. 2018, 232, 36–43. DOI: 10.1016/j.jfoodeng.2018.03.012.
  • Yu, Y.; Jin, T. Z.; Fan, X.; Wu, J. Biochemical Degradation and Physical Migration of Polyphenolic Compounds in Osmotic Dehydrated Blueberries with Pulsed Electric Field and Thermal Pretreatments. Food Chem. 2018, 239, 1219–1225. DOI: 10.1016/j.foodchem.2017.07.071.
  • Sablani, S. S. Drying of Fruits and Vegetables: Retention of Nutritional/Functional Quality. Drying Technol. 2006, 24, 123–135. DOI: http://doi.org/10.1080/07373930600558904.
  • Nayak, B.; Berrios, J. D. J.; Powers, J. R.; Tang, J.; Ji, Y. Colored Potatoes (Solanum Tuberosum L.) Dried for Antioxidant-Rich Value-Added Foods. J. Food Process. Preserv. 2011, 35, 571–580. DOI: 10.1111/j.1745-4549.2010.00502.x.
  • Kaspar, K. L.; Park, J. S.; Mathison, B. D.; Brown, C. R.; Massimino, S.; Chew, B. P. Processing of Pigmented-Flesh Potatoes (Solanum Tuberosum L.) on the Retention of Bioactive Compounds. Int. J. Food Sci. Technol. 2012, 47, 376–382. DOI: 10.1111/j.1365-2621.2011.02850.x.
  • Baeghbali, V.; Niakousari, M.; Farahnaky, A. Refractance Window Drying of Pomegranate Juice: Quality Retention and Energy Efficiency. LWT - Food Sci. Technol. 2016, 66, 34–40. DOI: 10.1016/j.lwt.2015.10.017.
  • Puente, L.; Vega-Galvez, A.; Ah-Hen, K. S.; Rodriguez, A.; Pasten, A.; Poblete, J.; Pardo-Orellana, C.; Munoz, M. Refractance Window Drying of Goldenberry (Physalis Peruviana L.) Pulp: A Comparison of Quality Characteristics with Respect to Other Drying Techniques. Lwt-Food Sci. Technol. 2020, 131, 109772. DOI: http://doi.org/10.1016/j.lwt.2020.109772.
  • Abonyi, B. I.; Feng, H.; Tang, J.; Edwards, C. G.; Chew, B. P.; Mattinson, D. S.; Fellman, J. K. Quality Retention in Strawberry and Carrot Purees Dried with Refractance Windowtm System. J. Food Sci. 2002, 67, 1051–1056. DOI: 10.1111/j.1365-2621.2002.tb09452.x.
  • Nindo, C. I.; Sun, T.; Wang, S. W.; Tang, J.; Powers, J. R. Evaluation of Drying Technologies for Retention of Physical Quality and Antioxidants in Asparagus (Asparagus Officinalis, L.). LWT - Food Sci. Technol. 2003, 36, 507–516. DOI: 10.1016/S0023-6438(03)00046-X.
  • Quintero Ruiz, N. A.; Demarchi, S. M.; Giner, S. A. Effect of Hot Air, Vacuum and Infrared Drying Methods on Quality of Rose Hip (R Osa Rubiginosa) Leathers. Int. J. Food Sci. Technol. 2014, 49, 1799–1804. DOI: 10.1111/ijfs.12486.
  • Orikasa, T.; Koide, S.; Okamoto, S.; Imaizumi, T.; Muramatsu, Y.; Takeda, J-i.; Shiina, T.; Tagawa, A. Impacts of Hot Air and Vacuum Drying on the Quality Attributes of Kiwifruit Slices. J. Food Eng. 2014, 125, 51–58. DOI: 10.1016/j.jfoodeng.2013.10.027.
  • Sahari, M. A.; Hamidi-Esfehani, Z.; Samadlui, H. Optimization of Vacuum Drying Characteristics of Date Powder. Drying Technol. 2008, 26, 793–797. DOI: http://doi.org/10.1080/07373930802046476.
  • Methakhup, S.; Chiewchan, N.; Devahastin, S. Effects of Drying Methods and Conditions on Drying Kinetics and Quality of Indian Gooseberry Flake. LWT - Food Sci. Technol. 2005, 38, 579–587. DOI: 10.1016/j.lwt.2004.08.012.
  • Goztepe, B.; Kayacan, S.; Bozkurt, F.; Tomas, M.; Sagdic, O.; Karasu, S. Drying Kinetics, Total Bioactive Compounds, Antioxidant Activity, Phenolic Profile, Lycopene and Β-Carotene Content and Color Quality of Rosehip Dehydrated by Different Methods. LWT 2022, 153, 112476. DOI: 10.1016/j.lwt.2021.112476.
  • Araya-Farias, M.; Makhlouf, J.; Ratti, C. Drying of Seabuckthorn (Hippophae Rhamnoides L.) Berry: Impact of Dehydration Methods on Kinetics and Quality. Drying Technol. 2011, 29, 351–359. DOI: 10.1080/07373937.2010.497590.
  • Hawlader, M. N. A.; Perera, C. O.; Tian, M.; Yeo, K. L. Drying of Guava and Papaya: Impact of Different Drying Methods. Drying Technol. 2006, 24, 77–87. DOI: http://doi.org/10.1080/07373930500538725.
  • Gümüşay, Ö. A.; Borazan, A. A.; Ercal, N.; Demirkol, O. Drying Effects on the Antioxidant Properties of Tomatoes and Ginger. Food Chem. 2015, 173, 156–162. DOI: 10.1016/j.foodchem.2014.09.162.
  • Phoungchandang, S.; Saentaweesuk, S. Effect of Two Stage, Tray and Heat Pump Assisted-Dehumidified Drying on Drying Characteristics and Qualities of Dried Ginger. Food Bioprod. Process. 2011, 89, 429–437. DOI: 10.1016/j.fbp.2010.07.006.
  • Costa, B. R.; Rodrigues, M. C. K.; Rocha, S. F.; Pohndorf, R. S.; Larrosa, A. P. Q.; Pinto, L. A. A. Optimization of Spirulina Sp. Drying in Heat Pump: Effects on the Physicochemical Properties and Color Parameters. J. Food Process. Preserv. 2016, 40, 934–942. DOI: 10.1111/jfpp.12672.
  • Pal, U. S.; Khan, M. K.; Mohanty, S. N. Heat Pump Drying of Green Sweet Pepper. Drying Technol. 2008, 26, 1584–1590. DOI: http://doi.org/10.1080/07373930802467144.
  • Venkatachalam, S. K.; Thottipalayam Vellingri, A.; Selvaraj, V. Low-Temperature Drying Characteristics of Mint Leaves in a Continuous-Dehumidified Air Drying System. J. Food Process Eng. 2020, 43, e13384. DOI: 10.1111/jfpe.13384.
  • Potisate, Y.; Phoungchandang, S.; Kerr, W. L. The Effects of Predrying Treatments and Different Drying Methods on Phytochemical Compound Retention and Drying Characteristics of Moringa Leaves (Moringa Oleifera Lam). Drying Technol. 2014, 32, 1970–1985. DOI: http://doi.org/10.1080/07373937.2014.926912.
  • Raghavi, L. M.; Moses, J. A.; Anandharamakrishnan, C. Refractance Window Drying of Foods: A Review. J. Food Eng. 2018, 222, 267–275. DOI: 10.1016/j.jfoodeng.2017.11.032.
  • Rostami, H.; Dehnad, D.; Jafari, S. M.; Tavakoli, H. R. Evaluation of Physical, Rheological, Microbial, and Organoleptic Properties of Meat Powder Produced by Refractance Window Drying. Drying Technol. 2018, 36, 1076–1085. DOI: 10.1080/07373937.2017.1377224.
  • Bernaert, N.; Van Droogenbroeck, B.; Van Pamel, E.; De Ruyck, H. Innovative Refractance Window Drying Technology to Keep Nutrient Value during Processing. Trends in Food Sci. Technol. 2019, 84, 22–24. DOI: 10.1016/j.tifs.2018.07.029.
  • Ochoa-Martínez, C. I.; Quintero, P. T.; Ayala, A. A.; Ortiz, M. J. Drying Characteristics of Mango Slices Using the Refractance Window™ Technique. J. Food Eng. 2012, 109, 69–75. DOI: 10.1016/j.jfoodeng.2011.09.032.
  • Huang, J.; Zhang, M. Effect of Three Drying Methods on the Drying Characteristics and Quality of Okra. Drying Technol. 2016, 34, 900–911. DOI: http://doi.org/10.1080/07373937.2015.1086367.
  • Bourdoux, S.; Li, D.; Rajkovic, A.; Devlieghere, F.; Uyttendaele, M. Performance of Drying Technologies to Ensure Microbial Safety of Dried Fruits and Vegetables. Compr. Rev. Food Sci. Food Saf. 2016, 15, 1056–1066. DOI: 10.1111/1541-4337.12224.
  • Karam, M. C.; Petit, J.; Zimmer, D.; Baudelaire Djantou, E.; Scher, J. Effects of Drying and Grinding in Production of Fruit and Vegetable Powders: A Review. J. Food Eng. 2016, 188, 32–49. DOI: 10.1016/j.jfoodeng.2016.05.001.
  • Dev, S. R. S.; Raghavan, V. G. S. Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technol. 2012, 30, 1147–1159. DOI: http://doi.org/10.1080/07373937.2012.692747.
  • Calín-Sánchez, Á.; Lipan, L.; Cano-Lamadrid, M.; Kharaghani, A.; Masztalerz, K.; Carbonell-Barrachina, Á. A.; Figiel, A. Comparison of Traditional and Novel Drying Techniques and Its Effect on Quality of Fruits, Vegetables and Aromatic Herbs. Foods 2020, 9, 1261. DOI: http://doi.org/10.3390/foods9091261.
  • Figiel, A.; Michalska, A. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes with the Assistance of Vacuum-Microwaves. IJMS 2016, 18, 71. DOI: 10.3390/ijms18010071.
  • Zielinska, M.; Michalska, A. Microwave-Assisted Drying of Blueberry (Vaccinium Corymbosum L.) Fruits: Drying Kinetics, Polyphenols, Anthocyanins, Antioxidant Capacity, Colour and Texture. Food Chem. 2016, 212, 671–680. DOI: 10.1016/j.foodchem.2016.06.003.
  • Salehi, F. Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. Int. J. Fruit Sci. 2020, 20, 586–602. DOI: 10.1080/15538362.2019.1616243.
  • Sun, Q.; Zhang, M.; Mujumdar, A. S.; Yang, P. Combined Lf-Nmr and Artificial Intelligence for Continuous Real-Time Monitoring of Carrot in Microwave Vacuum Drying. Food Bioprocess Technol. 2019, 12, 551–562. DOI: 10.1007/s11947-018-2231-1.
  • Ratti, C. Hot Air and Freeze-Drying of High-Value Foods: A Review. J. Food Eng. 2001, 49, 311–319. DOI: 10.1016/S0260-8774(00)00228-4.
  • Oikonomopoulou, V. P.; Krokida, M. K. Novel Aspects of Formation of Food Structure during Drying. Drying Technol. 2013, 31, 990–1007. DOI: http://doi.org/10.1080/07373937.2013.771186.
  • Bhatta, S.; Janezic, T. S.; Ratti, C. Freeze-Drying of Plant-Based Foods. Foods 2020, 9, 87. DOI: http://doi.org/10.3390/foods9010087.
  • Shofian, N. M.; Hamid, A. A.; Osman, A.; Saari, N.; Anwar, F.; Pak Dek, M. S.; Hairuddin, M. R. Effect of Freeze-Drying on the Antioxidant Compounds and Antioxidant Activity of Selected Tropical Fruits. IJMS 2011, 12, 4678–4692. DOI: 10.3390/ijms12074678.
  • Regier, M.; Mayer-Miebach, E.; Behsnilian, D.; Neff, E.; Schuchmann, H. P. Influences of Drying and Storage of Lycopene-Rich Carrots on the Carotenoid Content. Drying Technol. 2005, 23, 989–998. DOI: http://doi.org/10.1081/DRT-200054255.
  • Santos, P. H. S.; Silva, M. A. Retention of Vitamin C in Drying Processes of Fruits and Vegetables—a Review. Drying Technol. 2008, 26, 1421–1437. DOI: http://doi.org/10.1080/07373930802458911.
  • Chen, F.; Zhang, M.; Mujumdar, A. S.; Guo, C.; Yu, D. Comparative Analysis of Composition and Hygroscopic Properties of Infrared Freeze-Dried Blueberries, Cranberries and Raspberries. Drying Technol. 2021, 39, 1261–1270. DOI: http://doi.org/10.1080/07373937.2021.1913418.
  • Fengying, C.; Min, Z.; Sakamon, D.; Dongxing, Y. Comparative Evaluation of the Properties of Deep-Frozen Blueberries Dried by Vacuum Infrared Freeze Drying with the Use of Co2 Laser Perforation, Ultrasound, and Freezing-Thawing as Pretreatments. Food Bioprocess Technol. 2021, 14, 1805–1816. DOI: http://doi.org/10.1007/s11947-021-02677-0.
  • Wu, X-f.; Zhang, M.; Bhandari, B. A Novel Infrared Freeze Drying (Irfd) Technology to Lower the Energy Consumption and Keep the Quality of Cordyceps Militaris. Innovative Food Sci. Emerg. Technol. 2019, 54, 34–42. DOI: 10.1016/j.ifset.2019.03.003.
  • Xu, D.; Min, Z.; Xinlin, L.; Mujumdar, A. S. Microwave Freeze Drying of Sea Cucumber Coated with Nanoscale Silver. Drying Technol. 2008, 26, 413–419. DOI: 10.1080/07373930801929136.
  • Wang, R.; Zhang, M.; Mujumdar, A. S. Effects of Vacuum and Microwave Freeze Drying on Microstructure and Quality of Potato Slices. J. Food Eng. 2010, 101, 131–139. DOI: http://doi.org/10.1016/j.jfoodeng.2010.05.021.
  • Fan, K.; Zhang, M.; Mujumdar, A. S. Recent Developments in High Efficient Freeze-Drying of Fruits and Vegetables Assisted by Microwave: A Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 1357–1366. DOI: 10.1080/10408398.2017.1420624.
  • Cheng, X.-F.; Zhang, M.; Adhikari, B. Effect of Ultrasonically Induced Nucleation on the Drying Kinetics and Physical Properties of Freeze-Dried Strawberry. Drying Technol. 2014, 32, 1857–1864. DOI: http://doi.org/10.1080/07373937.2014.952741.
  • Xiao-Fei, W.; Min, Z.; Bhesh, B.; Zhongqin, L. Effects of Microwave Assisted Pulse Fluidized Bed Freeze-Drying (Mpffd) on Quality Attributes of Cordyceps Militaris. Food Biosci. 2019, 28, 7–14. DOI: http://doi.org/10.1016/j.fbio.2019.01.001.
  • Minea, V. Overview of Heat-Pump–Assisted Drying Systems, Part Ii: Data Provided Vs. Results Reported. Drying Technol. 2015, 33, 527–540. DOI: 10.1080/07373937.2014.952378.
  • Uthpala, T. G. G.; Navaratne, S. B.; Thibbotuwawa, A. Review on Low-Temperature Heat Pump Drying Applications in Food Industry: Cooling with Dehumidification Drying Method. J. Food Process Eng. 2020, 43, e13502. DOI: 10.1111/jfpe.13502.
  • Minea, V. Heat-Pump–Assisted Drying: Recent Technological Advances and R&D Needs. Drying Technol. 2013, 31, 1177–1189. DOI: http://doi.org/10.1080/07373937.2013.781623.
  • Alves-Filho, O.; Eikevik, T.; Mulet, A.; Garau, C.; Rossello, C. Kinetics and Mass Transfer during Atmospheric Freeze Drying of Red Pepper. Drying Technol. 2007, 25, 1155–1161. DOI: http://doi.org/10.1080/07373930701438469.
  • Chaturvedi, S.; Khartad, A.; Chakraborty, S. The Potential of Non-Dairy Synbiotic Instant Beverage Powder: Review on a New Generation of Healthy Ready-to-Reconstitute Drinks. Food Biosci. 2021, 42, 101195. DOI: 10.1016/j.fbio.2021.101195.
  • Rodrigues, J. F.; Andrade, RdS.; Bastos, S. C.; Coelho, S. B.; Pinheiro, A. C. M. Miracle Fruit: An Alternative Sugar Substitute in Sour Beverages. Appetite 2016, 107, 645–653. DOI: 10.1016/j.appet.2016.09.014.
  • Andrade, A. C.; Martins, M. B.; Rodrigues, J. F.; Coelho, S. B.; Pinheiro, A. C. M.; Bastos, S. C. Effect of Different Quantities of Miracle Fruit on Sour and Bitter Beverages. LWT 2019, 99, 89–97. DOI: 10.1016/j.lwt.2018.09.054.
  • Santos Monteiro, S.; Albertina Silva Beserra, Y.; Miguel Lisboa Oliveira, H.; Pasquali, M. A. Production of Probiotic Passion Fruit (Passiflora Edulis Sims F. Flavicarpa Deg.) Drink Using Lactobacillus Reuteri and Microencapsulation via Spray Drying. Foods 2020, 9, 335. DOI: http://doi.org/10.3390/foods9030335.
  • Looi, Y. F.; Ong, S. P.; Julkifle, A.; Alias, M. S. Effects of Pretreatment and Spray Drying on the Physicochemical Properties and Probiotics Viability of Moringa (Moringa Oleifera Lam) Leaf Juice Powder. J. Food Process Preserv. 2019, 43, e13915. DOI: 10.1111/jfpp.13915.
  • Alves, N. N.; de Oliveira Sancho, S.; da Silva, A. R. A.; Desobry, S.; da Costa, J. M. C.; Rodrigues, S. Spouted Bed as an Efficient Processing for Probiotic Orange Juice Drying. Food Res. Int. 2017, 101, 54–60. DOI: 10.1016/j.foodres.2017.08.052.
  • Guergoletto, K. B.; Busanello, M.; Garcia, S. Influence of Carrier Agents on the Survival of Lactobacillus Reuteri Lr92 and the Physicochemical Properties of Fermented Juçara Pulp Produced by Spray Drying. LWT 2017, 80, 321–327. DOI: 10.1016/j.lwt.2017.02.038.
  • Nazari Kermanshahi, S.; Sharifan, A.; Yousefi, S. Physicochemical, Microstructural, Bioactivity and Viability Characteristics of Probiotic Spray-Dried Raisin Powder. Food Measure 2021, 15, 633–642. DOI: http://doi.org/10.1007/s11694-020-00662-3.
  • Skenderidis, P.; Mitsagga, C.; Lampakis, D.; Petrotos, K.; Giavasis, I. The Effect of Encapsulated Powder of Goji Berry (Lycium Barbarum) on Growth and Survival of Probiotic Bacteria. Microorganisms 2019, 8, 57. DOI: http://doi.org/10.3390/microorganisms8010057.
  • Bochnak-Niedźwiecka, J.; Świeca, M. Quality of New Functional Powdered Beverages Enriched with Lyophilized Fruits—Potentially Bioaccessible Antioxidant Properties, Nutritional Value, and Consumer Analysis. Appl. Sci. 2020, 10, 3668. DOI: http://doi.org/10.3390/app10113668.
  • Queiroz, V. A. V.; Aguiar, AdS.; de Menezes, C. B.; de Carvalho, C. W. P.; Paiva, C. L.; Fonseca, P. C.; da Conceição, R. R. P. A Low Calorie and Nutritive Sorghum Powdered Drink Mix: Influence of Tannin on the Sensorial and Functional Properties. J. Cereal Sci. 2018, 79, 43–49. DOI: 10.1016/j.jcs.2017.10.001.
  • Zhao, Y.; Asimi, S.; Wu, K.; Zheng, J.; Li, D. Black Tea Consumption and Serum Cholesterol Concentration: Systematic Review and Meta-Analysis of Randomized Controlled Trials. Clin. Nutr. 2015, 34, 612–619. DOI: 10.1016/j.clnu.2014.06.003.
  • Zhang, Y.; Yu, Y.; Li, X.; Meguro, S.; Hayashi, S.; Katashima, M.; Yasumasu, T.; Wang, J.; Li, K. Effects of Catechin-Enriched Green Tea Beverage on Visceral Fat Loss in Adults with a High Proportion of Visceral Fat: A Double-Blind, Placebo-Controlled, Randomized Trial. J. Funct. Foods 2012, 4, 315–322. DOI: 10.1016/j.jff.2011.12.010.
  • Elisha, I. L.; Viljoen, A. Trends in Rooibos Tea (Aspalathus Linearis) Research (1994–2018): a Scientometric Assessment. South African J. Botany 2021, 137, 159–170. DOI: 10.1016/j.sajb.2020.10.004.
  • Bi, W.; Shen, J.; Gao, Y.; He, C.; Peng, Y.; Xiao, P. Ku-Jin Tea (Acer Tataricum Subsp. Ginnala or A. Tataricum Subsp. Theiferum), an Underestimated Functional Beverage Rich in Antioxidant Phenolics. J. Funct. Foods 2016, 24, 75–84. DOI: 10.1016/j.jff.2016.04.002.
  • Miller, C.; Ettridge, K.; Pettigrew, S.; Wittert, G.; Wakefield, M.; Coveney, J.; Roder, D.; Martin, J.; Brownbill, A.; Dono, J. Warning Labels and Interpretive Nutrition Labels: Impact on Substitution between Sugar and Artificially Sweetened Beverages, Juice and Water in a Real-World Selection Task. Appetite 2022, 169, 105818. DOI: 10.1016/j.appet.2021.105818.
  • Shi, Y.-C.; Lin, K.-S.; Jhai, Y.-F.; Lee, B.-H.; Han, Y.; Cui, Z.; Hsu, W.-H.; Wu, S.-C. Miracle Fruit (Synsepalum Dulcificum) Exhibits as a Novel anti-Hyperuricaemia Agent. Molecules 2016, 21, 140. DOI: 10.3390/molecules21020140.
  • Ranadheera, C.; Vidanarachchi, J.; Rocha, R.; Cruz, A.; Ajlouni, S. Probiotic Delivery through Fermentation: Dairy Vs. Non-Dairy Beverages. Fermentation 2017, 3, 67. DOI: http://doi.org/10.3390/fermentation3040067.
  • Chaturvedi, S.; Chakraborty, S. Review on Potential Non‐Dairy Synbiotic Beverages: A Preliminary Approach Using Legumes. Int. J. Food Sci. Technol. 2021, 56, 2068–2077. DOI: http://doi.org/10.1111/ijfs.14779.
  • Nazhand, A.; Souto, E. B.; Lucarini, M.; Souto, S. B.; Durazzo, A.; Santini, A. Ready to Use Therapeutical Beverages: Focus on Functional Beverages Containing Probiotics, Prebiotics and Synbiotics. Beverages 2020, 6, 26. DOI: http://doi.org/10.3390/beverages6020026.
  • Lebaka, V. R.; Wee, Y. J.; Narala, V. R.; Joshi, V. K. Chapter 4 - Development of New Probiotic Foods—a Case Study on Probiotic Juices. In Therapeutic, Probiotic, and Unconventional Foods; Grumezescu, A. M.; Holban, A. M., Eds.; Elsevier, Academic Press, 2018; pp 55–78.
  • Omolola, A. O.; Jideani, A. I. O.; Kapila, P. F. Quality Properties of Fruits as Affected by Drying Operation. Crit. Rev. Food Sci. Nutr. 2017, 57, 95–108. DOI: http://doi.org/10.1080/10408398.2013.859563.
  • Morais, R. M. S. C.; Morais, A. M. M. B.; Dammak, I.; Bonilla, J.; Sobral, P. J. A.; Laguerre, J.-C.; Afonso, M. J.; Ramalhosa, E. C. D. Functional Dehydrated Foods for Health Preservation. J. Food Qual. 2018, 2018, 1–29. DOI: http://doi.org/10.1155/2018/1739636.
  • Alasalvar, C.; Shahidi, F. Composition, Phytochemicals, and Beneficial Health Effects of Dried Fruits: An Overview. In Dried Fruits: Phytochemicals and Health Effects, Wiley, 2013; pp 1–18.
  • Hernández-Alonso, P.; Camacho-Barcia, L.; Bulló, M.; Salas-Salvadó, J. Nuts and Dried Fruits: An Update of Their Beneficial Effects on Type 2 Diabetes. Nutrients 2017, 9, 673. DOI: 10.3390/nu9070673.
  • Rodríguez-Roque, M. J.; Rojas-Graü, M. A.; Elez-Martínez, P.; Martín-Belloso, O. In Vitro Bioaccessibility of Health-Related Compounds as Affected by the Formulation of Fruit Juice- and Milk-Based Beverages. Food Res. Int. 2014, 62, 771–778. DOI: 10.1016/j.foodres.2014.04.037.
  • Tresserra-Rimbau, A.; Lamuela-Raventos, R. M.; Moreno, J. J. Polyphenols, Food and Pharma. Current Knowledge and Directions for Future Research. Biochem. Pharmacol. 2018, 156, 186–195. DOI: 10.1016/j.bcp.2018.07.050.
  • van Breda, S. G. J.; de Kok, T. M. C. M. Smart Combinations of Bioactive Compounds in Fruits and Vegetables May Guide New Strategies for Personalized Prevention of Chronic Diseases. Mol. Nutr. Food Res. 2018, 62, 1700597. DOI: 10.1002/mnfr.201700597.
  • Gunathilake, K. D. P. P.; Rupasinghe, H. P. V.; Pitts, N. L. Formulation and Characterization of a Bioactive-Enriched Fruit Beverage Designed for Cardio-Protection. Food Res. Int. 2013, 52, 535–541. DOI: 10.1016/j.foodres.2013.02.051.
  • Toscano, L. T.; Silva, A. S.; Toscano, L. T.; Tavares, R. L.; Biasoto, A. C. T.; de Camargo, A. C.; da Silva, C. S. O.; Gonçalves, MdCR.; Shahidi, F. Phenolics from Purple Grape Juice Increase Serum Antioxidant Status and Improve Lipid Profile and Blood Pressure in Healthy Adults under Intense Physical Training. J. Funct. Foods 2017, 33, 419–424. DOI: 10.1016/j.jff.2017.03.063.
  • Les, F.; Carpéné, C.; Arbonés-Mainar, J. M.; Decaunes, P.; Valero, M. S.; López, V. Pomegranate Juice and Its Main Polyphenols Exhibit Direct Effects on Amine Oxidases from Human Adipose Tissue and Inhibit Lipid Metabolism in Adipocytes. J. Funct. Foods 2017, 33, 323–331. DOI: 10.1016/j.jff.2017.04.006.
  • Grant, J.; Ryland, D.; Isaak, C. K.; Prashar, S.; Siow, Y. L.; Taylor, C. G.; Aliani, M. Effect of Vitamin D3 Fortification and Saskatoon Berry Syrup Addition on the Flavor Profile, Acceptability, and Antioxidant Properties of Rooibos Tea (Aspalathus Linearis). J. Food Sci. 2017, 82, 807–817. DOI: 10.1111/1750-3841.13646.
  • Suliburska, J.; Bogdanski, P.; Szulinska, M.; Stepien, M.; Pupek-Musialik, D.; Jablecka, A. Effects of Green Tea Supplementation on Elements, Total Antioxidants, Lipids, and Glucose Values in the Serum of Obese Patients. Biol. Trace Elem. Res. 2012, 149, 315–322. DOI: http://doi.org/10.1007/s12011-012-9448-z.
  • Hiasa, M.; Kurokawa, M.; Akita, H.; Harada, M.; Niki, K.; Ohta, K.; Shoji, M.; Echigo, N.; Kuzuhara, T. Suppression of Increased Blood Glucose Levels in Mice by Awa-Ban Tea following Oral Administration of Mono- and Disaccharides. J. Funct. Foods 2014, 8, 188–192. DOI: 10.1016/j.jff.2014.03.012.
  • Tang, W.; Li, S.; Liu, Y.; Huang, M.-T.; Ho, C.-T. Anti-Diabetic Activity of Chemically Profiled Green Tea and Black Tea Extracts in a Type 2 Diabetes Mice Model via Different Mechanisms. J. Funct. Foods 2013, 5, 1784–1793. DOI: 10.1016/j.jff.2013.08.007.
  • Chen, T.-S.; Liou, S.-Y.; Wu, H.-C.; Tsai, F.-J.; Tsai, C.-H.; Huang, C.-Y.; Chang, Y.-L. Efficacy of Epigallocatechin-3-Gallate and Amla (Emblica Officinalis) Extract for the Treatment of Diabetic-Uremic Patients. J. Med. Food 2011, 14, 718–723. DOI: http://doi.org/10.1089/jmf.2010.1195.
  • Gomes, I. A.; Venâncio, A.; Lima, J. P.; Freitas-Silva, O. Fruit-Based Non-Dairy Beverage: A New Approach for Probiotics. ABC 2021, 11, 302–330. DOI: http://doi.org/10.4236/abc.2021.116021.
  • Ester, B.; Noelia, B.; Laura, C.-J.; Francesca, P.; Cristina, B.; Rosalba, L.; Marco, D. R. Probiotic Survival and in Vitro Digestion of L. Salivarius Spp. Salivarius Encapsulated by High Homogenization Pressures and Incorporated into a Fruit Matrix. Lwt 2019, 111, 883–888. DOI: 10.1016/j.lwt.2019.05.088.
  • Guan, Q.; Xiong, T.; Xie, M. Influence of Probiotic Fermented Fruit and Vegetables on Human Health and the Related Industrial Development Trend. Engineering 2021, 7, 212–218. DOI: 10.1016/j.eng.2020.03.018.
  • Dias, C. O.; dos Santos Opuski de Almeida, J.; Pinto, S. S.; de Oliveira Santana, F. C.; Verruck, S.; Müller, C. M. O.; Prudêncio, E. S.; de Mello Castanho Amboni, R. D. Development and Physico-Chemical Characterization of Microencapsulated Bifidobacteria in Passion Fruit Juice: A Functional Non-Dairy Product for Probiotic Delivery. Food Biosci. 2018, 24, 26–36. DOI: 10.1016/j.fbio.2018.05.006.
  • Muzzafar, A.; Sharma, V. Microencapsulation of Probiotics for Incorporation in Cream Biscuits. Food Measure 2018, 12, 2193–2201. DOI: http://doi.org/10.1007/s11694-018-9835-z.
  • Zhang, C.; Quek, S. Y.; Fu, N.; Su, Y.; Kilmartin, P. A.; Chen, X. D. Storage Stability and in Vitro Digestion of Microencapsulated Powder Containing Fermented Noni Juice and Probiotics. Food Biosci. 2020, 37, 100740. DOI: 10.1016/j.fbio.2020.100740.
  • Martín, M. J.; Lara-Villoslada, F.; Ruiz, M. A.; Morales, M. E. Microencapsulation of Bacteria: A Review of Different Technologies and Their Impact on the Probiotic Effects. Innovative Food Sci. Emerging Technol. 2015, 27, 15–25. DOI: 10.1016/j.ifset.2014.09.010.
  • Barbosa, J.; Teixeira, P. Development of Probiotic Fruit Juice Powders by Spray-Drying: A Review. Food Rev. Int. 2017, 33, 335–358. DOI: http://doi.org/10.1080/87559129.2016.1175016.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.