Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 5
407
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Drying of food industry and agricultural waste: Current scenario and future perspectives

ORCID Icon, &
Pages 628-654 | Received 03 May 2022, Accepted 25 Aug 2022, Published online: 10 Sep 2022

References

  • Pinto, R. B.; Kwarteng, S. O.; Hamidu, J. A.; Essandoh, M. K. Sensitivity of Nutritional and Microbial Content of Food Wastes to Drying Technologies. Sci. Afr. 2022, 16, e01130. DOI: 10.1016/j.sciaf.2022.e01130.
  • Thyberg, K. L.; Tonjes, D. J. Drivers of Food Waste and Their Implications for Sustainable Policy Development. Resour. Conserv. Recycl. 2016, 106, 110–123. DOI: 10.1016/j.resconrec.2015.11.016.
  • Lou, X.; Nair, J. The Impact of Landfilling and Composting on Greenhouse Gas Emissions – A Review. Bioresour. Technol. 2009, 100, 3792–3798. DOI: 10.1016/j.biortech.2008.12.006.
  • Thi, N. B. D.; Kumar, G.; Lin, C.-Y. An Overview of Food Waste Management in Developing Countries: Current Status and Future Perspective. J. Environ. Manage. 2015, 157, 220–229. DOI: 10.1016/j.jenvman.2015.04.022.
  • Siaw, M. N. K.; Oduro-Koranteng, E. A.; Dartey, Y. O. O. Food-Energy-Water Nexus: Food Waste Recycling System for Energy. Energy Nexus 2022, 5, 100053. DOI: 10.1016/j.nexus.2022.100053.
  • FAO. The state of food security and nutrition in the world – Safeguarding against economic slowdowns and downturns; Food and Agriculture Organization of the United Nations: Rome, 2019.
  • UNEP. Global Environment Outlook – GEO-6: Summary for Policymakers. Nairobi, 2019.
  • FAO. The State of Food and Agriculture. Moving Forward on Food Loss and Waste Reduction; Food and Agriculture Organization of the United Nations: Rome, 2019.
  • Routray, W. Food Industry Byproducts: Resource for Nutraceuticals and Biomedical Applications. In Food Bioactives: Functionality and Applications in Human Health, 2019; p 359.
  • Khaing Hnin, K.; Zhang, M.; Mujumdar, A. S.; Zhu, Y. Emerging Food Drying Technologies with Energy-Saving Characteristics: A Review. Drying Technol. 2019, 37, 1465–1480. DOI: 10.1080/07373937.2018.1510417.
  • Rodríguez, B. S.; Rivera, G. Á.; Valdés, A.; Ibáñez, E.; Cifuentes, A. Food by-Products and Food Wastes: Are They Safe Enough for Their Valorization? Trends Food Sci. Technol. 2021, 114, 133–147. DOI: 10.1016/j.tifs.2021.05.002.
  • Bakhtavar, M. A. Impact of Postharvest Drying and Storage Technologies on Quality of Seeds; University of Agriculture: Faisalabad, 2019.
  • Rostami, H.; Dehnad, D.; Jafari, S. M.; Tavakoli, H. R. Evaluation of Physical, Rheological, Microbial, and Organoleptic Properties of Meat Powder Produced by Refractance Window Drying. Drying Technol. 2018, 36, 1076–1085. DOI: 10.1080/07373937.2017.1377224.
  • Liu, H.; E, J.; Ma, X.; Xie, C. Influence of Microwave Drying on the Combustion Characteristics of Food Waste. Drying Technol. 2016, 34, 1397–1405. DOI: 10.1080/07373937.2015.1118121.
  • Ng, S. K.; Plunkett, A.; Stojceska, V.; Ainsworth, P.; Lamont-Black, J.; Hall, J.; White, C.; Glendenning, S.; Russell, D. Electro-Kinetic Technology as a Low-Cost Method for Dewatering Food by-Product. Drying Technol. 2011, 29, 1721–1728. DOI: 10.1080/07373937.2011.602199.
  • Nguyen, T.-T.; Rosselló, C.; Ratti, C. Understanding Air-Drying Behavior of Potato Peel Waste. Drying Technol. 2022, 1–12., DOI: 10.1080/07373937.2022.2062603.
  • Freire, F. B.; Atxutegi, A.; Freire, F. B.; Freire, J. T.; Aguado, R.; Olazar, M. An Adaptive Lumped Parameter Cascade Model for Orange Juice Solid Waste Drying in Spouted Bed. Drying Technol. 2017, 35, 577–584. DOI: 10.1080/07373937.2016.1190937.
  • Bhatkar, N. S.; Shirkole, S. S.; Mujumdar, A. S.; Thorat, B. N. Drying of Tomatoes and Tomato Processing Waste: A Critical Review of the Quality Aspects. Drying Technol. 2021, 39, 1720–1744. DOI: 10.1080/07373937.2021.1910832.
  • Sette, P.; Garrido Makinistian, F.; Maturano, C.; Salvatori, D. Particulate Systems from Maqui (Aristotelia chilensis) Wastes to Be Used as Nutraceutics or High Value-Added Ingredients. Drying Technol. 2021, 1–16., DOI: 10.1080/07373937.2021.1953521.
  • Goula, A. M.; Chasekioglou, A. N.; Lazarides, H. N. Drying and Shrinkage Kinetics of Solid Waste of Olive Oil Processing. Drying Technol. 2015, 33, 1728–1738. DOI: 10.1080/07373937.2015.1026983.
  • Patil, R. T.; Shukla, B. D. Natural Convection Cabinet Tray Dryer Using Agricultural Waste Fuel. Drying Technol. 1988, 6, 195–212. DOI: 10.1080/07373938808916371.
  • Perazzini, H.; Perazzini, M. T. B.; Freire, F. B.; Freire, F. B.; Freire, J. T. Efficiency Analysis of Citrus Waste Biomass Valorization Using Rotary Dryer. Drying Technol. 2022, 1–11., DOI: 10.1080/07373937.2022.2064871.
  • Lopez, A.; Iguaz, A.; Esnoz, A.; Virseda, P. Thin-Layer Drying Behaviour of Vegetable Wastes from Wholesale Market. Drying Technol. 2000, 18, 995–1006. DOI: 10.1080/07373930008917749.
  • Lopez, A.; Iguaz, A.; Esnoz, A.; Virseda, P. Modelling of Sorption Isotherms of Dried Vegetable Wastes from Wholesale Market. Drying Technol. 2000, 18, 985–994. DOI: 10.1080/07373930008917748.
  • Tan, C. H.; Hii, C. L.; Borompichaichartkul, C.; Phumsombat, P.; Kong, I.; Pui, L. P. Valorization of Fruits, Vegetables, and Their by-Products: Drying and Bio-Drying. Drying Technol. 2022, 40, 1514–1538. DOI: 10.1080/07373937.2022.2068570.
  • Goula, A. M.; Adamopoulos, K. G. A Method for Preparing a Novel Solid Product from Olive Mill Wastewater: Wastewater Characterization and Product Recovery. Drying Technol. 2013, 31, 339–349. DOI: 10.1080/07373937.2012.736114.
  • Maciel, L. R.; Miyasaki, E. K.; Feisther, V. A.; Pinto, L. A. d. A. Statistical Evaluation of the Protein Enrichment of Rice Bran Using Spouted Bed. Drying Technol. 2012, 30, 733–738. DOI: 10.1080/07373937.2012.660714.
  • Martins, M. P.; Cortés, E. J.; Eim, V.; Mulet, A.; Cárcel, J. A. Stabilization of Apple Peel by Drying. Influence of Temperature and Ultrasound Application on Drying Kinetics and Product Quality. Drying Technol. 2019, 37, 559–568. DOI: 10.1080/07373937.2018.1474476.
  • Taruna, I.; Jindal, V. K. Drying of Soy Pulp (Okara) in a Bed of Inert Particles. Drying Technol. 2002, 20, 1035–1051. DOI: 10.1081/DRT-120004012.
  • Aktaş, M.; Taşeri, L.; Şevik, S.; Gülcü, M.; Uysal Seçkin, G.; Dolgun, E. C. Heat Pump Drying of Grape Pomace: Performance and Product Quality Analysis. Drying Technol. 2019, 37, 1766–1779. DOI: 10.1080/07373937.2018.1536983.
  • Baysan, U.; Koç, M.; Güngör, A.; Ertekin, F. K. Investigation of Drying Conditions to Valorize 2-Phase Olive Pomace in Further Processing. Drying Technol. 2022, 40, 65–76. DOI: 10.1080/07373937.2020.1770279.
  • Duan, X.; Liu, L. L.; Ren, G. Y.; Zhu, W. X. Microwave Freeze Drying of Type I Collagen from Bovine Bone. Drying Technol. 2013, 31, 1701–1706. DOI: 10.1080/07373937.2013.793704.
  • Nguyen, V. T.; Tran, T. G.; Tran, N. L. Phytochemical Compound Yield and Antioxidant Activity of Cocoa Pod Husk (Theobroma cacao L.) as Influenced by Different Dehydration Conditions. Drying Technol. 2022, 40, 2021–2033. DOI: 10.1080/07373937.2021.1913745.
  • Wang, J.; Wang, H.; Xiao, H.-W.; Fang, X.-M.; Zhang, W.-P.; Ma, C.-L. Effects of Drying Temperature on the Drying Characteristics and Volatile Profiles of Citrus reticulata Blanco Peels under Two Stages of Maturity. Drying Technol. 2022, 40, 2456–2469. DOI: 10.1080/07373937.2021.1907590.
  • Fan, H.; Zhang, M.; Mujumdar, A. S.; Liu, Y. Effect of Different Drying Methods Combined with Fermentation and Enzymolysis on Nutritional Composition and Flavor of Chicken Bone Powder. Drying Technol. 2021, 39, 1240–1250. DOI: 10.1080/07373937.2021.1894440.
  • Mansouri, S.; Woo, M. W.; Chen, X. D. Making Uniform Whey, Lactose, and Composite Lactose–Whey Particles from the Dehydration of Single Droplets with Antisolvent Vapor. Drying Technol. 2013, 31, 1570–1577. DOI: 10.1080/07373937.2013.807284.
  • Rodríguez-Díaz, J. C.; Tonon, R. V.; Hubinger, M. D. Spray Drying of Blue Shark Skin Protein Hydrolysate: Physical, Morphological, and Antioxidant Properties. Drying Technol. 2014, 32, 1986–1996. DOI: 10.1080/07373937.2014.928726.
  • Vu, H. T.; Scarlett, C. J.; Vuong, Q. V. Effects of Drying Conditions on Physicochemical and Antioxidant Properties of Banana (Musa cavendish) Peels. Drying Technol. 2017, 35, 1141–1151. DOI: 10.1080/07373937.2016.1233884.
  • Liu, Z.; Zhang, M.; Bhandari, B.; Yang, Z.; Wang, Y. Quality of Restructured Cookies Made from Old Stalks of Asparagus officinalis Using Various Drying Methods. Drying Technol. 2016, 34, 1936–1947. DOI: 10.1080/07373937.2016.1144198.
  • Al-Rawahi, A. S.; Rahman, M. S.; Guizani, N.; Essa, M. M. Chemical Composition, Water Sorption Isotherm, and Phenolic Contents in Fresh and Dried Pomegranate Peels. Drying Technol. 2013, 31, 257–263. DOI: 10.1080/07373937.2012.710695.
  • Chitrakar, B.; Zhang, M.; Zhang, X.; Bhandari, B. Valorization of Asparagus-Leaf by-Product through Nutritionally Enriched Chips to Evaluate the Effect of Powder Particle Size on Functional Properties and Rutin Contents. Drying Technol. 2022, 1–12., DOI: 10.1080/07373937.2022.2080703.
  • Antoniolli, P. R.; Ferrari, C. C.; Borges, D. F.; Germer, S. P. M. Sorption Isotherms, Glass Transition and Storage Stability of Drum-Dried Mango Peels Obtained with and without Process Additives. Drying Technol. 2022, 1–12., DOI: 10.1080/07373937.2022.2093897.
  • Tangkhawanit, E.; Meeso, N.; Siriamornpun, S. Changes in Bioactive Components, Biological Activities and Starch Digestibility of Soymilk Residues as Affected by Far-Infrared Radiation Combined with Hot-Air and Hot-Air Drying. Drying Technol. 2022, 1–14., DOI: 10.1080/07373937.2022.2030351.
  • Wuttipalakorn, P.; Srichumpuang, W.; Chiewchan, N. Effects of Pretreatment and Drying on Composition and Bitterness of High-Dietary-Fiber Powder from Lime Residues. Drying Technol. 2009, 27, 133–142. DOI: 10.1080/07373930802566036.
  • Söbeli, C.; Kayaardı, S. Optimization of Primary Freeze Drying Conditions for Powdered Chicken Meat Hydrolysate from Mechanically Deboned Chicken Residues. Drying Technol. 2020, 38, 1356–1366. DOI: 10.1080/07373937.2019.1640723.
  • Mahdi Jafari, S.; Masoudi, S.; Bahrami, A. A Taguchi Approach Production of Spray-Dried Whey Powder Enriched with Nanoencapsulated Vitamin D3. Drying Technol. 2019, 37, 2059–2071. DOI: 10.1080/07373937.2018.1552598.
  • Ramirez-Suarez, J. C.; Santiz-Gómez, M. A.; Pacheco-Aguilar, R.; Scheuren-Acevedo, S. M.; García-Sifuentes, C. O.; Robles-Ozuna, L. E.; Martínez-Porchas, M.; Carvallo-Ruiz, M. G. Spray-Drying Effect of the Soluble Solids from an Effluent Produced by Cooking Jumbo Squid (Dosidicusgigas) Mantle Muscle. Drying Technol. 2014, 32, 1200–1209. DOI: 10.1080/07373937.2014.890213.
  • Yang, B.; Jahng, D. Optimization of Food Waste Bioevaporation Process Using Response Surface Methodology. Drying Technol. 2015, 33, 1188–1198. DOI: 10.1080/07373937.2014.943235.
  • Ahmad-Qasem, M. H.; Ahmad-Qasem, B. H.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J. A.; García-Pérez, J. V. Drying and Storage of Olive Leaf Extracts. Influence on Polyphenols Stability. Ind. Crops Prod. 2016, 79, 232–239. DOI: 10.1016/j.indcrop.2015.11.006.
  • Kamran, M.; Hamlin, A. S.; Scott, C. J.; Obied, H. K. Drying at High Temperature for a Short Time Maximizes the Recovery of Olive Leaf Biophenols. Ind. Crops Prod. 2015, 78, 29–38. DOI: 10.1016/j.indcrop.2015.10.031.
  • Routray, W.; Orsat, V.; Gariepy, Y. Effect of Different Drying Methods on the Microwave Extraction of Phenolic Components and Antioxidant Activity of Highbush Blueberry Leaves. Drying Technol. 2014, 32, 1888–1904. DOI: 10.1080/07373937.2014.919002.
  • Celma, A. R.; Cuadros, F.; López-Rodríguez, F. Convective Drying Characteristics of Sludge from Treatment Plants in Tomato Processing Industries. Food Bioprod. Process. 2012, 90, 224–234. DOI: 10.1016/j.fbp.2011.04.003.
  • FAO. Global Food Losses and Food Waste – Extent, Causes and Prevention. Food and Agriculture Organization of the United Nations: Rome, 2011.
  • Dave, D.; Routray, W. Fishery Byproducts: Recovery of High Value Nutritional Components. In Reference Module in Food Science; Elsevier, 2019. DOI: 10.1016/B978-0-08-100596-5.22588-2.
  • Ramakrishnan, V.; Routray, W.; Dave, D. An Overview of Bioprocessing and Biorefinery Approach for Sustainable Fisheries., In Developing Technologies in Food Science; Meghwal, M., Goyal, M. R., Eds.; CRC Press: Ontario, Canada, 2016; pp 193–278.
  • Bhattacharya, A.; Nand, A.; Prajogo, D. Taxonomy of Antecedents of Food Waste – A Literature Review. J. Cleaner Prod. 2021, 291, 125910. DOI: 10.1016/j.jclepro.2021.125910.
  • Ibrahim, M.; El-Sawi, S. Quality and Quantity of Volatile Oil Resulting from the Recycling of Different Forms of Orange Peel Using Drying Methods. J. Mater. Environ. Sci 2019, 10, 598–603.
  • Oliver-Simancas, R.; Díaz-Maroto, M. C.; Pérez-Coello, M. S.; Alañón, M. E. Viability of Pre-Treatment Drying Methods on Mango Peel by-Products to Preserve Flavouring Active Compounds for Its Revalorisation. J. Food Eng. 2020, 279, 109953. DOI: 10.1016/j.jfoodeng.2020.109953.
  • Lamidi, R. O.; Jiang, L.; Pathare, P. B.; Wang, Y. D.; Roskilly, A. P. Recent Advances in Sustainable Drying of Agricultural Produce: A Review. Appl. Energy 2019, 233-234, 367–385. DOI: 10.1016/j.apenergy.2018.10.044.
  • Routray, W.; Dave, D.; Cheema, S. K.; Ramakrishnan, V. V.; Pohling, J. Biorefinery Approach and Environment-Friendly Extraction for Sustainable Production of Astaxanthin from Marine Wastes. Crit. Rev. Biotechnol. 2019, 39, 469–488. DOI: 10.1080/07388551.2019.1573798.
  • Xiong, X.; Yu, I. K. M.; Tsang, D. C. W.; Bolan, N. S.; Sik Ok, Y.; Igalavithana, A. D.; Kirkham, M. B.; Kim, K.-H.; Vikrant, K. Value-Added Chemicals from Food Supply Chain Wastes: State-of-the-Art Review and Future Prospects. Chem. Eng. J. 2019, 375, 121983. DOI: 10.1016/j.cej.2019.121983.
  • Westendorf, M. L. Food Waste to Animal Feed; John Wiley & Sons: Iowa State University Press, Ames, Iowa, USA, 2000.
  • Salemdeeb, R.; zu Ermgassen, E. K.; Kim, M. H.; Balmford, A.; Al-Tabbaa, A. Environmental and Health Impacts of Using Food Waste as Animal Feed: A Comparative Analysis of Food Waste Management Options. J. Clean. Prod. 2017, 140, 871–880. DOI: 10.1016/j.jclepro.2016.05.049.
  • San Martin, D.; Ramos, S.; Zufía, J. Valorisation of Food Waste to Produce New Raw Materials for Animal Feed. Food Chem. 2016, 198, 68–74. DOI: 10.1016/j.foodchem.2015.11.035.
  • Silvenius, F.; Koskinen, N.; Kurppa, S.; Rekilä, T.; Sepponen, J.; Hyvärinen, H. Life Cycle Assessment of Mink and Fox Pelts Produced in Finland; Wageningen Academic Publishers: Wageningen, 2012, pp 106–111.
  • Mo, W. Y.; Man, Y. B.; Wong, M. H. Use of Food Waste, Fish Waste and Food Processing Waste for China’s Aquaculture Industry: Needs and Challenge. Sci. Total Environ. 2018, 613-614, 635–643. DOI: 10.1016/j.scitotenv.2017.08.321.
  • Hammoumi, A.; Faid, M.; El yachioui, M.; Amarouch, H. Characterization of Fermented Fish Waste Used in Feeding Trials with Broilers. Process Biochem. 1998, 33, 423–427. DOI: 10.1016/S0032-9592(97)00092-7.
  • Vega-Gálvez, A.; Andrés, A.; Gonzalez, E.; Notte-Cuello, E.; Chacana, M.; Lemus-Mondaca, R. Mathematical Modelling on the Drying Process of Yellow Squat Lobster (Cervimunida jhoni) Fishery Waste for Animal Feed. Anim. Feed Sci. Technol. 2009, 151, 268–279. DOI: 10.1016/j.anifeedsci.2009.01.003.
  • Vandermeersch, T.; Alvarenga, R.; Ragaert, P.; Dewulf, J. Environmental Sustainability Assessment of Food Waste Valorization Options. Resour. Conserv. Recycl. 2014, 87, 57–64. DOI: 10.1016/j.resconrec.2014.03.008.
  • Dev, S. R. S.; Raghavan, V. G. S. Advancements in Drying Techniques for Food, Fiber, and Fuel. Drying Technol. 2012, 30, 1147–1159. DOI: 10.1080/07373937.2012.692747.
  • Chhandama, M. V. L.; Chetia, A. C.; Satyan, K. B.; Ao, S.; Ruatpuia, J. V.; Rokhum, S. L. Valorisation of Food Waste to Sustainable Energy and Other Value-Added Products: A Review. Bioresour. Technol. Rep. 2022, 17, 100945. DOI: 10.1016/j.biteb.2022.100945.
  • Zhang, C.; Su, H.; Baeyens, J.; Tan, T. Reviewing the Anaerobic Digestion of Food Waste for Biogas Production. Renew. Sustain. Energy Rev. 2014, 38, 383–392. DOI: 10.1016/j.rser.2014.05.038.
  • Brown, D.; Li, Y. Solid State Anaerobic Co-Digestion of Yard Waste and Food Waste for Biogas Production. Bioresour. Technol. 2013, 127, 275–280. DOI: 10.1016/j.biortech.2012.09.081.
  • Vajpeyi, S.; Chandran, K. Microbial Conversion of Synthetic and Food Waste-Derived Volatile Fatty Acids to Lipids. Bioresour. Technol. 2015, 188, 49–55. DOI: 10.1016/j.biortech.2015.01.099.
  • Chi, Z.; Zheng, Y.; Jiang, A.; Chen, S. Lipid Production by Culturing Oleaginous Yeast and Algae with Food Waste and Municipal Wastewater in an Integrated Process. Appl. Biochem. Biotechnol. 2011, 165, 442–453. DOI: 10.1007/s12010-011-9263-6.
  • Leiva-Candia, D.; Pinzi, S.; Redel-Macías, M.; Koutinas, A.; Webb, C.; Dorado, M. The Potential for Agro-Industrial Waste Utilization Using Oleaginous Yeast for the Production of Biodiesel. Fuel 2014, 123, 33–42. DOI: 10.1016/j.fuel.2014.01.054.
  • Yu, J. Microbial Production of Bioplastics from Renewable Resources. In Bioprocessing for Value-Added Products from Renewable Resources; Shang-Tian Yang, Ed.; Elsevier: Amsterdam, The Netherlands, 2007, pp 585–610.
  • Routray, W.; Dave, D.; Ramakrishnan, V. V.; Murphy, W. Study of Drying Kinetics of Salmon Processing by-Products at Different Temperatures and the Quality of Extracted Fish Oil. Drying Technol. 2017, 35, 1981–1993. DOI: 10.1080/07373937.2017.1293684.
  • Dave, D.; Pohling, J.; Routray, W. Marine Oils as Biodiesel. In Bailey’s Industrial Oil and Fat Products, Shahidi, F., Ed.; John Wiley and Sons Inc.: New York, USA, 2020, pp. 1–20.
  • Kamal, S. Z.; Tran, Q. N. M.; Koyama, M.; Mimoto, H.; Asada, C.; Nakamura, Y.; Nakasak, K. Effect of Hydrothermal Treatment on Organic Matter Degradation, Phytotoxicity, and Microbial Communities in Model Food Waste Composting. J. Biosci. Bioeng. 2022, 133, 382–389. DOI: 10.1016/j.jbiosc.2022.01.004.
  • Saer, A.; Lansing, S.; Davitt, N. H.; Graves, R. E. Life Cycle Assessment of a Food Waste Composting System: Environmental Impact Hotspots. J. Cleaner Prod. 2013, 52, 234–244. DOI: 10.1016/j.jclepro.2013.03.022.
  • Lee, J.-J.; Park, R.-D.; Kim, Y.-W.; Shim, J.-H.; Chae, D.-H.; Rim, Y.-S.; Sohn, B.-K.; Kim, T.-H.; Kim, K.-Y. Effect of Food Waste Compost on Microbial Population, Soil Enzyme Activity and Lettuce Growth. Bioresour. Technol. 2004, 93, 21–28. DOI: 10.1016/j.biortech.2003.10.009.
  • Sullivan, D.; Bary, A.; Nartea, T.; Myrhe, E.; Cogger, C.; Fransen, S. Nitrogen Availability Seven Years after a High-Rate Food Waste Compost Application. Compost Sci. Util. 2003, 11, 265–275. DOI: 10.1080/1065657X.2003.10702133.
  • Waqas, M.; Nizami, A.; Aburiazaiza, A.; Barakat, M.; Ismail, I.; Rashid, M. Optimization of Food Waste Compost with the Use of Biochar. J. Environ. Manage. 2018, 216, 70–81. DOI: 10.1016/j.jenvman.2017.06.015.
  • Cekmecelioglu, D.; Demirci, A.; Graves, R. E.; Davitt, N. H. Applicability of Optimised in-Vessel Food Waste Composting for Windrow Systems. Biosyst. Eng. 2005, 91, 479–486. DOI: 10.1016/j.biosystemseng.2005.04.013.
  • Han, S.-K.; Shin, H.-S.; Song, Y.-C.; Lee, C.-Y.; Kim, S.-H. Novel Anaerobic Process for the Recovery of Methane and Compost from Food Waste. Water Sci. Technol. 2002, 45, 313–319. DOI: 10.2166/wst.2002.0363.
  • Li, Z.; Lu, H.; Ren, L.; He, L. Experimental and Modeling Approaches for Food Waste Composting: A Review. Chemosphere 2013, 93, 1247–1257. DOI: 10.1016/j.chemosphere.2013.06.064.
  • Fujiwara, T.; Hara, M.; Murakami, K. The Effect of Drying Method of Animal Waste Compost Samples on Evaluation of Plant Growth Inhibition. Japanese J. Soil Sci. Plant Nutr. (Japan) 2003, 74, 607–614.
  • Mohanty, A.; Tummala, P.; Liu, W.; Misra, M.; Mulukutla, P.; Drzal, L. Injection Molded Biocomposites from Soy Protein Based Bioplastic and Short Industrial Hemp Fiber. J. Polym. Environ. 2005, 13, 279–285. DOI: 10.1007/s10924-005-4762-6.
  • Ghanbarzadeh, B.; Oromiehi, A. Biodegradable Biocomposite Films Based on Whey Protein and Zein: Barrier, Mechanical Properties and AFM Analysis. Int. J. Biol. Macromol. 2008, 43, 209–215. DOI: 10.1016/j.ijbiomac.2008.05.006.
  • Patil, N. V.; Netravali, A. N. Microfibrillated Cellulose‐Reinforced Nonedible Starch‐Based Thermoset Biocomposites. J. Appl. Polymer Sci. 2016, 133, 43803 (1 of 9). DOI: 10.1002/app.43803.
  • Sanyang, M. L.; Ilyas, R.; Sapuan, S.; Jumaidin, R. Sugar Palm Starch-Based Composites for Packaging Applications. In Bionanocomposites for Packaging Applications; Springer: New York, USA, 2018; pp. 125–147.
  • Zahari, M. A. K. M.; Ariffin, H.; Mokhtar, M. N.; Salihon, J.; Shirai, Y.; Hassan, M. A. Case Study for a Palm Biomass Biorefinery Utilizing Renewable Non-Food Sugars from Oil Palm Frond for the Production of Poly (3-Hydroxybutyrate) Bioplastic. J. Cleaner Prod. 2015, 87, 284–290. DOI: 10.1016/j.jclepro.2014.10.010.
  • Jaafar, C. N. A. Preparation and Characterization of Hydroxyapatite from Black Tilapia Fish Scales Using Spray-Drying Method. Malaysian J. Microsc. 2019, 15, 155–163.
  • Miljkovic, D.; Bignami, G. Nutraceuticals and Methods of Obtaining Nutraceuticals from Tropical Crops. Patent number: US 2005/0129827 A1. Google Patents, 2002.
  • Guo, C.; Zhang, N.; Liu, C.; Xue, J.; Chu, J.; Yao, X. Qualities and Antioxidant Activities of Lotus Leaf Affected by Different Drying Methods. Acta Physiol. Plant 2020, 42, 14. DOI: 10.1007/s11738-019-2992-9.
  • Ribeiro, T. B.; Oliveira, A.; Coelho, M.; Veiga, M.; Costa, E. M.; Silva, S.; Nunes, J.; Vicente, A. A.; Pintado, M. Are Olive Pomace Powders a Safe Source of Bioactives and Nutrients? J. Sci. Food Agric. 2021, 101, 1963–1978. DOI: 10.1002/jsfa.10812.
  • Ballesteros, L. F.; Ramirez, M. J.; Orrego, C. E.; Teixeira, J. A.; Mussatto, S. I. Encapsulation of Antioxidant Phenolic Compounds Extracted from Spent Coffee Grounds by Freeze-Drying and Spray-Drying Using Different Coating Materials. Food Chem. 2017, 237, 623–631. DOI: 10.1016/j.foodchem.2017.05.142.
  • Eisinaitė, V.; Leskauskaitė, D.; Pukalskienė, M.; Venskutonis, P. R. Freeze-Drying of Black Chokeberry Pomace Extract–Loaded Double Emulsions to Obtain Dispersible Powders. J. Food Sci. 2020, 85, 628–638.
  • Esparza, Y.; Ngo, T.-D.; Boluk, Y. Preparation of Powdered Oil Particles by Spray Drying of Cellulose Nanocrystals Stabilized Pickering Hempseed Oil Emulsions. Colloids Surf. A 2020, 598, 124823., DOI: 10.1016/j.colsurfa.2020.124823.
  • Jiang, N.; Dev Kumar, G.; Chen, J.; Mishra, A.; Mis Solval, K. Mis Solval, K. Comparison of Concurrent and Mixed-Flow Spray Drying on Viability, Growth Kinetics and Biofilm Formation of Lactobacillus rhamnosus GG Microencapsulated with Fish Gelatin and Maltodextrin. LWT 2020, 124, 109200. DOI: 10.1016/j.lwt.2020.109200.
  • Paini, M.; Aliakbarian, B.; Casazza, A. A.; Lagazzo, A.; Botter, R.; Perego, P. Microencapsulation of Phenolic Compounds from Olive Pomace Using Spray Drying: A Study of Operative Parameters. LWT – Food Sci. Technol. 2015, 62, 177–186. DOI: 10.1016/j.lwt.2015.01.022.
  • Hayes, J.; Allen, P.; Brunton, N.; O’grady, M.; Kerry, J. Phenolic Composition and in Vitro Antioxidant Capacity of Four Commercial Phytochemical Products: Olive Leaf Extract (Olea europaea L.), Lutein, Sesamol and Ellagic Acid. Food Chem. 2011, 126, 948–955. DOI: 10.1016/j.foodchem.2010.11.092.
  • Abdul-Hamid, A.; Bakar, J.; Bee, G. H. Nutritional Quality of Spray Dried Protein Hydrolysate from Black Tilapia (Oreochromis mossambicus). Food Chem. 2002, 78, 69–74. DOI: 10.1016/S0308-8146(01)00380-6.
  • Zhou, P.; Liu, D.; Chen, X.; Chen, Y.; Labuza, T. P. Stability of Whey Protein Hydrolysate Powders: Effects of Relative Humidity and Temperature. Food Chem. 2014, 150, 457–462. DOI: 10.1016/j.foodchem.2013.11.027.
  • Cathrein, E.; Stein, H.; Stoller, H.; Viardot, K. Powdered Aqueous Carotenoid Dispersions. Google Patents, 1994.
  • Gildberg, A.; Stenberg, E. A New Process for Advanced Utilisation of Shrimp Waste. Process Biochem. 2001, 36, 809–812. DOI: 10.1016/S0032-9592(00)00278-8.
  • Galaz, P.; Valdenegro, M.; Ramírez, C.; Nuñez, H.; Almonacid, S.; Simpson, R. Effect of Drum Drying Temperature on Drying Kinetic and Polyphenol Contents in Pomegranate Peel. J. Food Eng. 2017, 208, 19–27. DOI: 10.1016/j.jfoodeng.2017.04.002.
  • Gómez-de la Cruz, F. J.; Palomar-Carnicero, J. M.; Hernández-Escobedo, Q.; Cruz-Peragón, F. Determination of the Drying Rate and Effective Diffusivity Coefficients during Convective Drying of Two-Phase Olive Mill Waste at Rotary Dryers Drying Conditions for Their Application. Renew. Energy 2020, 153, 900–910. DOI: 10.1016/j.renene.2020.02.062.
  • Begum, S.; Ikejima, K.; Ara, H.; Islam, M. Solar Drying as an Option for Shrimp Processing Biowaste in Khulna District-Southwest Bangladesh. J. Appl. Sci. 2006, 6, 1220–1224.
  • Lin, C. B.; Cze, C. Y. Drying Kinetics and Optimisation of Pectin Extraction from Banana Peels via Response Surface Methodology. In MATEC Web of Conferences; EDP Sciences, 2018, p 01002.
  • Koukouch, A.; Idlimam, A.; Asbik, M.; Sarh, B.; Izrar, B.; Bostyn, S.; Bah, A.; Ansari, O.; Zegaoui, O.; Amine, A. Experimental Determination of the Effective Moisture Diffusivity and Activation Energy during Convective Solar Drying of Olive Pomace Waste. Renew. Energy 2017, 101, 565–574. DOI: 10.1016/j.renene.2016.09.006.
  • Lahsasni, S.; Kouhila, M.; Mahrouz, M.; Idlimam, A.; Jamali, A. Thin Layer Convective Solar Drying and Mathematical Modeling of Prickly Pear Peel (Opuntia ficus Indica). Energy 2004, 29, 211–224. DOI: 10.1016/j.energy.2003.08.009.
  • Shamekhi-Amiri, S.; Gorji, T. B.; Gorji-Bandpy, M.; Jahanshahi, M. Drying Behaviour of Lemon Balm Leaves in an Indirect Double-Pass Packed Bed Forced Convection Solar Dryer System. Case Stud. Therm. Eng. 2018, 12, 677–686. DOI: 10.1016/j.csite.2018.08.007.
  • Badaoui, O.; Hanini, S.; Djebli, A.; Haddad, B.; Benhamou, A. Experimental and Modelling Study of Tomato Pomace Waste Drying in a New Solar Greenhouse: Evaluation of New Drying Models. Renew. Energy 2019, 133, 144–155. DOI: 10.1016/j.renene.2018.10.020.
  • Burdo, O.; Bezbakh, I.; Shyshov, S.; Zykov, A.; Gavrilov, A.; Vsevolodov, O.; Sirotyuk, I.; Terziev, S. Experimental Studies of the Kinetics of Infrared Drying of Spent Coffee Grounds. TAPR 2019, 1, 4–10. DOI: 10.15587/2312-8372.2020.195863.
  • Karwacka, M.; Ciurzyńska, A.; Galus, S.; Janowicz, M. Freeze-Dried Snacks Obtained from Frozen Vegetable by-Products and Apple Pomace – Selected Properties, Energy Consumption and Carbon Footprint. Innov. Food Sci. Emerg. Technol. 2022, 77, 102949. DOI: 10.1016/j.ifset.2022.102949.
  • Garcia-Perez, J.; García-Alvarado, M.; Carcel, J.; Mulet, A. Extraction Kinetics Modeling of Antioxidants from Grape Stalk (Vitis vinifera Var. Bobal): Influence of Drying Conditions. J. Food Eng. 2010, 101, 49–58. DOI: 10.1016/j.jfoodeng.2010.06.008.
  • Aliakbarian, B.; Sampaio, F. C.; de Faria, J. T.; Pitangui, C. G.; Lovaglio, F.; Casazza, A. A.; Converti, A.; Perego, P. Optimization of Spray Drying Microencapsulation of Olive Pomace Polyphenols Using Response Surface Methodology and Artificial Neural Network. Lwt 2018, 93, 220–228. DOI: 10.1016/j.lwt.2018.03.048.
  • Yamashita, C.; Chung, M. M. S.; dos Santos, C.; Mayer, C. R. M.; Moraes, I. C. F.; Branco, I. G. Microencapsulation of an Anthocyanin-Rich Blackberry (Rubus Spp.) by-Product Extract by Freeze-Drying. Lwt 2017, 84, 256–262. DOI: 10.1016/j.lwt.2017.05.063.
  • Lim, K. J. A.; Cabajar, A. A.; Migallos, M. K. V.; Lobarbio, C. F. Y.; Taboada, E. B. Microencapsulation of Phenolic Compounds from Waste Mango Seed Kernel Extract by Spray Drying Technology. Nat. Environ. Pollut. Technol. 2019, 18, 765–775.
  • Comunian, T. A.; Silva, M. P.; Souza, C. J. F. The Use of Food by-Products as a Novel for Functional Foods: Their Use as Ingredients and for the Encapsulation Process. Trends Food Sci. Technol. 2021, 108, 269–280. DOI: 10.1016/j.tifs.2021.01.003.
  • Icier, F. Ohmic Blanching Effects on Drying of Vegetable Byproduct. J. Food Process Eng. 2010, 33, 661–683. DOI: 10.1111/j.1745-4530.2008.00295.x.
  • Ala’a, H.; Al-Harahsheh, M.; Hararah, M.; Magee, T. Drying Characteristics and Quality Change of Unutilized-Protein Rich-Tomato Pomace with and without Osmotic Pre-Treatment. Ind. Crops Prod. 2010, 31, 171–177. DOI: 10.1016/j.indcrop.2009.10.002.
  • Kumar, J. P.; Ramanathan, M.; Ranganathan, T. V. Ohmic Heating Technology in Food Processing. Int. J. Eng. Res. Technol. 2014, 3, 1236–1241.
  • do Nascimento, E. M. G. C.; Mulet, A.; Ascheri, J. L. R.; de Carvalho, C. W. P.; Cárcel, J. A. Effects of High-Intensity Ultrasound on Drying Kinetics and Antioxidant Properties of Passion Fruit Peel. J. Food Eng. 2016, 170, 108–118. DOI: 10.1016/j.jfoodeng.2015.09.015.
  • Zhou, Y.-H.; Staniszewska, I.; Liu, Z.-L.; Zielinska, D.; Xiao, H.-W.; Pan, Z.; Nowak, K. W.; Zielinska, M. Microwave-Vacuum-Assisted Drying of Pretreated Cranberries: Drying. LWT-Food Sci. Technol. 2021, 146, 111464. DOI: 10.1016/j.lwt.2021.111464.
  • Llavata, B.; García-Pérez, J. V.; Simal, S.; Cárcel, J. A. Innovative Pre-treatmentS to Enhance Food Drying: A Current Review. Curr. Opin. Food Sci. 2020, 35, 20–26. DOI: 10.1016/j.cofs.2019.12.001.
  • Moreira, S. A.; Alexandre, E. M. C.; Pintado, M.; Saraiva, J. A. Effect of Emergent Non-Thermal Extraction Technologies on Bioactive Individual Compounds Profile from Different Plant Materials. Food Res. Int. 2019, 115, 177–190. DOI: 10.1016/j.foodres.2018.08.046.
  • Chen, M. L.; Yang, D. J.; Liu, S. C. Effects of Drying Temperature on the Flavonoid, Phenolic Acid and Antioxidative Capacities of the Methanol Extract of Citrus Fruit (Citrus sinensis (L.) Osbeck) Peels. Int. J. Food Sci. Technol. 2011, 46, 1179–1185. DOI: 10.1111/j.1365-2621.2011.02605.x.
  • Meziane, S. Drying Kinetics of Olive Pomace in a Fluidized Bed Dryer. Energy Convers. Manage. 2011, 52, 1644–1649. DOI: 10.1016/j.enconman.2010.10.027.
  • Celma, A. R.; López-Rodríguez, F.; Blázquez, F. C. Experimental Modelling of Infrared Drying of Industrial Grape by-Products. Food Bioprod. Process. 2009, 87, 247–253. DOI: 10.1016/j.fbp.2008.10.005.
  • Arjona, R.; Garcı́a, A.; Ollero, P. The Drying of Alpeorujo, a Waste Product of the Olive Oil Mill Industry. J. Food Eng. 1999, 41, 229–234. DOI: 10.1016/S0260-8774(99)00104-1.
  • de Aguiar, A. C.; Visentainer, J. V.; Martínez, J. Optimising Drying Parameters to Maximise Omega‐3 Essential Fatty Acid Yields in Striped Weakfish (Cynoscion striatus) Industry Waste. Int. J. Food Sci. Technol. 2011, 46, 2475–2481. DOI: 10.1111/j.1365-2621.2011.02770.x.
  • Lalas, S.; Alibade, A.; Bozinou, E.; Makris, D. P. Drying Optimisation to Obtain Carotenoid-Enriched Extracts from Industrial Peach Processing Waste (Pomace). Beverages 2019, 5, 43. DOI: 10.3390/beverages5030043.
  • Oberoi, D. P. S.; Sogi, D. S. Drying Kinetics, Moisture Diffusivity and Lycopene Retention of Watermelon Pomace in Different Dryers. J. Food Sci. Technol. 2015, 52, 7377–7384. DOI: 10.1007/s13197-015-1863-7.
  • Albanese, D.; Adiletta, G.; D′ Acunto, M.; Cinquanta, L.; Di Matteo, M. Tomato Peel Drying and Carotenoids Stability of the Extracts. Int. J. Food Sci. Technol. 2014, 49, 2458–2463. DOI: 10.1111/ijfs.12602.
  • Begum, R.; Yusof, Y. A.; Aziz, M. G.; Uddin, M. B. Structural and Functional Properties of Pectin Extracted from Jackfruit (Artocarpus heterophyllus) Waste: Effects of Drying. Int. J. Food Prop. 2017, 20, S190–S201. DOI: 10.1080/10942912.2017.1295054.
  • Hoang, T. T.; Nguyen, T.-N.; Le, N. C. Optimization of the Infrared Assisted Heat Pump Drying Operation of White Leg Shrimp Using Particle Swarm Optimization. In International Conference on Engineering Research and Applications; Springer, Moscow, Russia, 24-26 October, 2019; pp. 575–581.
  • Peng, J.; Yin, X.; Jiao, S.; Wei, K.; Tu, K.; Pan, L. Air Jet Impingement and Hot Air-Assisted Radio Frequency Hybrid Drying of Apple Slices. Lwt 2019, 116, 108517. DOI: 10.1016/j.lwt.2019.108517.
  • Gong, C.; Liao, M.; Zhang, H.; Xu, Y.; Miao, Y.; Jiao, S. Investigation of Hot Air–Assisted Radio Frequency as a Final-Stage Drying of Pre-Dried Carrot Cubes. Food Bioprocess Technol. 2020, 13, 419–429. DOI: 10.1007/s11947-019-02400-0.
  • Bhambhani, A.; Evans, R. K.; Sinacola, J.; Lizzano, R. Method of Microwave Vacuum Drying Spherical-Shaped Pellets of Biological Materials. Google Patents, 2019.
  • Li, L.; Zhang, M.; Wang, W. A Novel Low-Frequency Microwave Assisted Pulse-Spouted Bed Freeze-Drying of Chinese Yam. Food Bioprod. Process. 2019, 118, 217–226. DOI: 10.1016/j.fbp.2019.09.012.
  • Chen, Y.; Li, M.; Dharmasiri, T. S. K.; Song, X.; Liu, F.; Wang, X. Novel Ultrasonic-Assisted Vacuum Drying Technique for Dehydrating Garlic Slices and Predicting the Quality Properties by Low Field Nuclear Magnetic Resonance. Food Chem. 2020, 306, 125625., DOI: 10.1016/j.foodchem.2019.125625.
  • Nordin, R.; Rozalli, N. H.; Yang, T. A. Application of Response Surface Methodology to Optimize the Drying Condition of Black Tea Using Superheated Steam Dryer. Int. J. Food Stud. 2019, 8, 81–92.
  • Nicholas; Abuzairi, T. Electrohydrodynamic Drying Process of the Amoxicillin Powder Using a High Direct Current (DC) Voltage. In AIP Conference Proceedings; AIP Publishing, Padang, Indonesia, 22–24 July, 2019; pp 050012.
  • Djaeni, M.; Perdanianti, A. The Study Explores the Effect of Onion (Allium cepa l.) Drying Using Hot Air Dehumidified by Activated Carbon, Silica Gel and Zeolite. J. Phys. Conf. Ser. 2019, 1295, 012025. DOI: 10.1088/1742-6596/1295/1/012025.
  • Djaeni, M.; Irfandy, F.; Utari, F. Drying Rate and Efficiency Energy Analysis of Paddy Drying Using Dehumidification with Zeolite. J. Phys. Conf. Ser. 2019, 1295, 012049. DOI: 10.1088/1742-6596/1295/1/012049.
  • Zhao, C.-C.; Ameer, K.; Eun, J.-B. Effects of Various Drying Conditions and Methods on Drying Kinetics and Retention of Bioactive Compounds in Sliced Persimmon. LWT-Food Sci. Technol. 2021, 143, 111149. DOI: 10.1016/j.lwt.2021.111149.
  • Gómez-de la Cruz, F. J.; Casanova-Peláez, P. J.; Palomar-Carnicero, J. M.; Cruz-Peragón, F. Drying Kinetics of Olive Stone: A Valuable Source of Biomass Obtained in the Olive Oil Extraction. Energy 2014, 75, 146–152. DOI: 10.1016/j.energy.2014.06.085.
  • Cuevas, M.; Martínez-Cartas, M. L.; Pérez-Villarejo, L.; Hernández, L.; García-Martín, J. F.; Sánchez, S. Drying Kinetics and Effective Water Diffusivities in Olive Stone and Olive-Tree Pruning. Renew. Energy 2019, 132, 911–920. DOI: 10.1016/j.renene.2018.08.053.
  • Uribe, E.; Lemus-Mondaca, R.; Vega-Gálvez, A.; Zamorano, M.; Quispe-Fuentes, I.; Pasten, A.; Di Scala, K. Influence of Process Temperature on Drying Kinetics, Physicochemical Properties and Antioxidant Capacity of the Olive-Waste Cake. Food Chem. 2014, 147, 170–176. DOI: 10.1016/j.foodchem.2013.09.121.
  • Ahmad-Qasem, M. H.; Barrajon-Catalan, E.; Micol, V.; Cárcel, J. A.; Garcia-Perez, J. V. Influence of Air Temperature on Drying Kinetics and Antioxidant Potential of Olive Pomace. J. Food Eng. 2013, 119, 516–524. DOI: 10.1016/j.jfoodeng.2013.06.027.
  • Duzzioni, A. G.; Lenton, V. M.; Silva, D. I.; Barrozo, M. A. Effect of Drying Kinetics on Main Bioactive Compounds and Antioxidant Activity of Acerola (Malpighia emarginata DC) Residue. Int. J. Food. Sci. Technol. 2013, 48, 1041–1047. DOI: 10.1111/ijfs.12060.
  • Henríquez, C.; Córdova, A.; Almonacid, S.; Saavedra, J. Kinetic Modeling of Phenolic Compound Degradation during Drum-Drying of Apple Peel by-Products. J. Food Eng. 2014, 143, 146–153. DOI: 10.1016/j.jfoodeng.2014.06.037.
  • Esparza-Martínez, F. J.; Miranda-López, R.; Guzman-Maldonado, S. H. Effect of Air-Drying Temperature on Extractable and Non-Extractable Phenolics and Antioxidant Capacity of Lime Wastes. Ind. Crops Prod. 2016, 84, 1–6. DOI: 10.1016/j.indcrop.2016.01.043.
  • M’hiri, N.; Ghali, R.; Nasr, I. B.; Boudhrioua, N. Effect of Different Drying Processes on Functional Properties of Industrial Lemon Byproduct. Process Saf. Environ. Protect. 2018, 116, 450–460. DOI: 10.1016/j.psep.2018.03.004.
  • Taşeri, L.; Aktaş, M.; Şevik, S.; Gülcü, M.; Uysal Seçkin, G.; Aktekeli, B. Determination of Drying Kinetics and Quality Parameters of Grape Pomace Dried with a Heat Pump Dryer. Food Chem. 2018, 260, 152–159. DOI: 10.1016/j.foodchem.2018.03.122.
  • Haas, ICdS.; Toaldo, I. M.; Müller, C. M. O.; Bordignon‐Luiz, M. T. Modeling of Drying Kinetics of the Non‐Pomace Residue of Red Grape (V. labrusca L.) Juices: Effect on the Microstructure and Bioactive Anthocyanins. J. Food Process Eng. 2017, 40, e12568. DOI: 10.1111/jfpe.12568.
  • Celia Roman, M.; Paula Fabani, M.; Celina Luna, L.; Egly Feresin, G.; Mazza, G.; Rodriguez, R. Convective Drying of Yellow Discarded Onion (Angaco INTA): Modelling of Moisture Loss Kinetics and Effect on Phenolic Compounds. Inf. Process. Agric. 2020, 7, 333–341. DOI: 10.1016/j.inpa.2019.07.002.
  • Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial Avocado Waste: Functional Compounds Preservation by Convective Drying Process. J. Food Eng. 2017, 198, 81–90. DOI: 10.1016/j.jfoodeng.2016.11.018.
  • Yan, H.; Kerr, W. L. Total Phenolics Content, Anthocyanins, and Dietary Fiber Content of Apple Pomace Powders Produced by Vacuum‐Belt Drying. J. Sci. Food Agric. 2013, 93, 1499–1504. DOI: 10.1002/jsfa.5925.
  • Siqueira, V. C.; Mabasso, G. A.; Quequeto, W. D.; da Silva, C. R.; Martins, E. A. S.; Isquierdo, E. P. Drying Kinetics and Effective Diffusion of Watermelon Seeds. RSD 2020, 9, e16942887. DOI: 10.33448/rsd-v9i4.2887.
  • Homez-Jara, A.; Daza, L. D.; Aguirre, D. M.; Muñoz, J. A.; Solanilla, J. F.; Váquiro, H. A. Characterization of Chitosan Edible Films Obtained with Various Polymer Concentrations and Drying Temperatures. Int. J. Biol. Macromol. 2018, 113, 1233–1240. DOI: 10.1016/j.ijbiomac.2018.03.057.
  • Baldán, Y.; Fernandez, A.; Urrutia, A. R.; Fabani, M. P.; Rodriguez, R.; Mazza, G. Non-Isothermal Drying of Bio-Wastes: Kinetic Analysis and Determination of Effective Moisture Diffusivity. J. Environ. Manage. 2020, 262, 110348. DOI: 10.1016/j.jenvman.2020.110348.
  • Sotiropoulos, A.; Malamis, D.; Michailidis, P.; Krokida, M.; Loizidou, M. Research on the Drying Kinetics of Household Food Waste for the Development and Optimization of Domestic Waste Drying Technique. Environ. Technol. 2016, 37, 929–939. DOI: 10.1080/21622515.2015.1092588.
  • Ekka, J. P.; Bala, K.; Muthukumar, P.; Kanaujiya, D. K. Performance Analysis of a Forced Convection Mixed Mode Horizontal Solar Cabinet Dryer for Drying of Black Ginger (Kaempferia parviflora) Using Two Successive Air Mass Flow Rates. Renew. Energy 2020, 152, 55–66. DOI: 10.1016/j.renene.2020.01.035.
  • Page, G. E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers, MS Thesis, Purdue University, West Lafayette, USA, 1949.
  • O’callaghan, J.; Menzies, D.; Bailey, P. Digital Simulation of Agricultural Drier Performance. J. Agric. Eng. Res. 1971, 16, 223–244. DOI: 10.1016/S0021-8634(71)80016-1.
  • Hendorson, S. Grain Drying Theory (I) Temperature Effect on Drying Coefficient. J. Agric. Eng. Res. 1961, 6, 169–174.
  • Sharaf-Eldeen, Y. I.; Blaisdell, J.; Hamdy, M. A Model for Ear Corn Drying. Trans. ASAE 1980, 5, 1261–1265.
  • Yagcioglu, A. Drying Characteristic of Laurel Leaves under Different Conditions. In Proceedings of the 7th International Congress on Agricultural Mechanization and Energy, 1999; Faculty of Agriculture, Cukurova University, 1999; pp 565–569.
  • Overhults, D. G.; White, G.; Hamilton, H.; Ross, I. Drying Soybeans with Heated Air. Trans. ASAE 1973, 16, 112.
  • Midilli, A.; Kucuk, H.; Yapar, Z. A New Model for Single-Layer Drying. Drying Technol. 2002, 20, 1503–1513. DOI: 10.1081/DRT-120005864.
  • Henderson, J.; Henderson, S. A Computational Procedure for Deep-Bed Drying Analysis. J. Agric. Eng. Res. 1968, 13, 87–95. DOI: 10.1016/0021-8634(68)90084-X.
  • Wang, C.; Singh, R. A Single Layer Drying Equation for Rough Rice. ASAE Paper No: 78-3001, ASAE, St. Joseph, MI, 1978.
  • Gómez-de la Cruz, F. J.; Cruz-Peragón, F.; Casanova-Peláez, P. J.; Palomar-Carnicero, J. M. A Vital Stage in the Large-Scale Production of Biofuels from Spent Coffee Grounds: The Drying Kinetics. Fuel Process. Technol. 2015, 130, 188–196. DOI: 10.1016/j.fuproc.2014.10.012.
  • Kayran, S.; Doymaz, İ. Determination of Drying Kinetics and Physicochemical Characterization of Apricot Pomace in Hot-Air Dryer. J. Therm. Anal. Calorim. 2017, 130, 1163–1170. DOI: 10.1007/s10973-017-6504-0.
  • Aghbashlo, M.; Kianmehr, M. H.; Arabhosseini, A. Modeling of Thin-Layer Drying of Potato Slices in Length of Continuous Band Dryer. Energy Convers. Manage. 2009, 50, 1348–1355. DOI: 10.1016/j.enconman.2009.01.004.
  • Nadhari, W. N. A. W.; Hashim, R.; Sulaiman, O.; Jumhuri, N. Drying Kinetics of Oil Palm Trunk Waste in Control Atmosphere and Open Air Convection Drying. Int. J. Heat Mass Transf. 2014, 68, 14–20. DOI: 10.1016/j.ijheatmasstransfer.2013.09.009.
  • Sozzi, A.; Zambon, M.; Mazza, G.; Salvatori, D. Fluidized Bed Drying of Blackberry Wastes: Drying Kinetics, Particle Characterization and Nutritional Value of the Obtained Granular Solids. Powder Technol. 2021, 385, 37–49. DOI: 10.1016/j.powtec.2021.02.058.
  • Gómez-Narváez, F.; Gómez-Narváez, S.; Contreras-Calderón, J.; Builes-Rivera, J.; Pérez-Martínez, A. Design and Construction of a Thin-Film Drying Channel Equipment – Modeling the Drying Kinetics of Nanofiltered Whey. J. Food Eng. 2019, 263, 359–365. DOI: 10.1016/j.jfoodeng.2019.07.018.
  • Tylewicz, U.; Mannozzi, C.; Castagnini, J. M.; Genovese, J.; Romani, S.; Rocculi, P.; Rosa, M. D. Application of PEF- and OD-Assisted Drying for Kiwifruit Waste Valorisation. Innov. Food Sci. Emerg. Technol. 2022, 77, 102952. DOI: 10.1016/j.ifset.2022.102952.
  • Al-Harahsheh, M.; Al-Muhtaseb, AaH.; Magee, T. R. A. Microwave Drying Kinetics of Tomato Pomace: Effect of Osmotic Dehydration. Chem. Eng. Process. 2009, 48, 524–531. DOI: 10.1016/j.cep.2008.06.010.
  • Yin, H.; Pu, J.; Wan, Y.; Xiang, B.; Bechtel, P. J.; Sathivel, S. Rheological and Functional Properties of Catfish Skin Protein Hydrolysates. J. Food Sci. 2010, 75, E11–E17. DOI: 10.1111/j.1750-3841.2009.01385.x.
  • Chel-Guerrero, L.; Barbosa-Martín, E.; Martínez-Antonio, A.; González-Mondragón, E.; Betancur-Ancona, D. Some Physicochemical and Rheological Properties of Starch Isolated from Avocado Seeds. Int. J. Biol. Macromol. 2016, 86, 302–308. DOI: 10.1016/j.ijbiomac.2016.01.052.
  • Both, E. M.; Tersteeg, S. M. B.; Boom, R. M.; Schutyser, M. A. I. Drying Kinetics and Viscoelastic Properties of Concentrated Thin Films as a Model System for Spray Drying. Colloids Surf. A 2020, 585, 124075. DOI: 10.1016/j.colsurfa.2019.124075.
  • Al Zaitone, B.; Al-Zahrani, A.; Al-Shahrani, S.; Lamprecht, A. Drying of a Single Droplet of Dextrin: Drying Kinetics Modeling and Particle Formation. Int. J. Pharm. 2020, 574, 118888. DOI: 10.1016/j.ijpharm.2019.118888.
  • Hu, H. Microbial Quality and Safety Assessment on Fresh Orange Pomace and Its Derivative from Drying and Refining as an Innovative Ingredient; California State Polytechnic University: Pomona, 2019.
  • Poul, S.; Bornare, D.; Babar, K. Nutritional and Functional Profiling of Mango Seed Powder and Its Suitability in Chakali. J. Pharm. Phytochem. 2019, 8, 2460–2464.
  • Chen, H.; Wang, M.; Lin, X. Optimization and Application of Spray-Drying Process on Oyster Cooking Soup Byproduct. Food Sci. Technol. 2017, 38, 407–412. DOI: 10.1590/1678-457x.05017.
  • Ramos, K. K.; Lessio, B. C.; Mecê, A. L. B.; Efraim, P. Mathematical Modeling of Uvaia Byproduct Drying and Evaluation of Quality Parameters. Food Sci. Biotechnol. 2017, 26, 643–651. DOI: 10.1007/s10068-017-0078-2.
  • Gerber, J.; Zavaly, A.; Gavrilov, A.; Olshevskaya, A.; Kiyan, N. Optimization of Energy Costs for Drying Ferrocene-Containing Wastes of Winemaking. In IOP Conference Series: Earth and Environmental Science; IOP Publishing, 2019, Vol. 403, pp 012014. DOI: 10.1088/1755-1315/403/1/012014.
  • Maj, G.; Krzaczek, P.; Gołębiowski, W.; Słowik, T.; Szyszlak-Bargłowicz, J.; Zając, G. Energy Consumption and Quality of Pellets Made of Waste from Corn Grain Drying Process. Sustainability 2022, 14, 8129. DOI: 10.3390/su14138129.
  • He, P.; Zhao, L.; Zheng, W.; Wu, D.; Shao, L. Energy Balance of a Biodrying Process for Organic Wastes of High Moisture Content: A Review. Drying Technol. 2013, 31, 132–145. DOI: 10.1080/07373937.2012.693143.
  • Sanchez Rodrigues, V.; Kumar, M. Synergies and Misalignments in Lean and Green Practices: A Logistics Industry Perspective. Prod. Plann. Control 2019, 30, 369–384. DOI: 10.1080/09537287.2018.1501812.
  • Secondi, L.; Principato, L.; Mattia, G. Can Digital Solutions Help in the Minimization of out-of-Home Waste? An Analysis from the Client and Business Perspective. BFJ 2019, 122, 1341–1359. DOI: 10.1108/BFJ-03-2019-0205.
  • Mak, T. M.; Iris, K.; Tsang, D. C.; Hsu, S.; Poon, C. S. Promoting Food Waste Recycling in the Commercial and Industrial Sector by Extending the Theory of Planned Behaviour: A Hong Kong Case Study. J. Cleaner Prod. 2018, 204, 1034–1043. DOI: 10.1016/j.jclepro.2018.09.049.
  • Abdul Aziz, N. I. H.; Hanafiah, M. M.; Mohamed Ali, M. Y. Sustainable Biogas Production from Agrowaste and Effluents – A Promising Step for Small-Scale Industry Income. Renew. Energy 2019, 132, 363–369. DOI: 10.1016/j.renene.2018.07.149.
  • Berger, R. Roland Berger Focus-Solar Power: Shining Prospects in Southeast Asia and India, 2019. https://www.rolandberger.com/publications/publication_pdf/roland_berger_solar_power_india_southeast_asia.pdf
  • Bouraiou, A.; Necaibia, A.; Boutasseta, N.; Mekhilef, S.; Dabou, R.; Ziane, A.; Sahouane, N.; Attoui, I.; Mostefaoui, M.; Touaba, O. Status of Renewable Energy Potential and Utilization in Algeria. J. Cleaner Prod. 2020, 246, 119011. DOI: 10.1016/j.jclepro.2019.119011.
  • Amran, Y. A.; Amran, Y. M.; Alyousef, R.; Alabduljabbar, H. Renewable and Sustainable Energy Production in Saudi Arabia According to Saudi Vision 2030; Current Status and Future Prospects. J. Cleaner Prod. 2020, 247, 119602. DOI: 10.1016/j.jclepro.2019.119602.
  • Kaygusuz, K.; Avci, A. C. Potential and Utilization of Solar Energy Policies in Turkey. J. Eng. Res. Appl. Sci. 2019, 8, 1087–1098.
  • de Souza, V. B.; Thomazini, M.; de Carvalho Balieiro, J. C.; Fávaro-Trindade, C. S. Effect of Spray Drying on the Physicochemical Properties and Color Stability of the Powdered Pigment Obtained from Vinification Byproducts of the Bordo Grape (Vitis labrusca). Food Bioprod. Process. 2015, 93, 39–50. DOI: 10.1016/j.fbp.2013.11.001.
  • Frascareli, E.; Silva, V.; Tonon, R.; Hubinger, M. Effect of Process Conditions on the Microencapsulation of Coffee Oil by Spray Drying. Food Bioprod. Process. 2012, 90, 413–424. DOI: 10.1016/j.fbp.2011.12.002.
  • Kalušević, A.; Lević, S.; Čalija, B.; Pantić, M.; Belović, M.; Pavlović, V.; Bugarski, B.; Milić, J.; Žilić, S.; Nedović, V. Microencapsulation of Anthocyanin-Rich Black Soybean Coat Extract by Spray Drying Using Maltodextrin, Gum Arabic and Skimmed Milk Powder. J. Microencapsul. 2017, 34, 475–487. DOI: 10.1080/02652048.2017.1354939.
  • Kara, C.; Doymaz, I. Thin Layer Drying Kinetics of by‐Products from Pomegranate Juice Processing. J. Food Process. Preserv. 2015, 39, 480–487. DOI: 10.1111/jfpp.12253.
  • Kara, C.; Doymaz, İ. Effective Moisture Diffusivity Determination and Mathematical Modelling of Drying Curves of Apple Pomace. Heat Mass Transfer 2015, 51, 983–989. DOI: 10.1007/s00231-014-1470-6.
  • Kaur, D.; Wani, A. A.; Sogi, D.; Shivhare, U. Sorption Isotherms and Drying Characteristics of Tomato Peel Isolated from Tomato Pomace. Drying Technol. 2006, 24, 1515–1520. DOI: 10.1080/07373930600961371.
  • Kumar, N.; Sarkar, B. C.; Sharma, H. K. Mathematical Modelling of Thin Layer Hot Air Drying of Carrot Pomace. J. Food Sci. Technol. 2012, 49, 33–41. DOI: 10.1007/s13197-011-0266-7.
  • Motevali, A.; Minaei, S.; Khoshtaghaza, M. H.; Kazemi, M.; Nikbakht, A. M. Drying of Pomegranate Arils: Comparison of Predictions from Mathematical Models and Neural Networks. Int. J. Food Eng. 2010, 6, 1889–1889. DOI: 10.2202/1556-3758.1889.
  • Torrecilla, J. S.; Aragón, J. M.; Palancar, M. C. Modeling the Drying of a High-Moisture Solid with an Artificial Neural Network. Ind. Eng. Chem. Res. 2005, 44, 8057–8066. DOI: 10.1021/ie0490435.
  • Chasiotis, V.; Tzempelikos, D.; Filios, A.; Moustris, K. Artificial Neural Network Modelling of Moisture Content Evolution for Convective Drying of Cylindrical Quince Slices. Comput. Electron. Agric. 2020, 172, 105074. DOI: 10.1016/j.compag.2019.105074.
  • Kırbaş, İ.; Tuncer, A. D.; Şirin, C.; Usta, H. Modeling and Developing a Smart Interface for Various Drying Methods of Pomelo Fruit (Citrus maxima) Peel Using Machine Learning Approaches. Comput. Electron. Agric. 2019, 165, 104928. DOI: 10.1016/j.compag.2019.104928.
  • Pommeret, A.; Yang, X.; Kwan, T. H.; Christoforou, E. A.; Fokaides, P. A.; Lin, C. S. K. Techno-Economic Study and Environmental Assessment of Food Waste Based Biorefinery. In Food Waste Reduction and Valorisation; Morone, P., Papendiek, F., Tartiu, V. E., Eds.; Springer: Switzerland, 2017; pp 121–146.
  • Dahiya, S.; Kumar, A. N.; Sravan, J. S.; Chatterjee, S.; Sarkar, O.; Mohan, S. V. Food Waste Biorefinery: Sustainable Strategy for Circular Bioeconomy. Bioresour. Technol. 2018, 248, 2–12. DOI: 10.1016/j.biortech.2017.07.176.
  • Teigiserova, D. A.; Hamelin, L.; Thomsen, M. Review of High-Value Food Waste and Food Residues Biorefineries with Focus on Unavoidable Wastes from Processing. Resour. Conserv. Recycl. 2019, 149, 413–426. DOI: 10.1016/j.resconrec.2019.05.003.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.