Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 7
103
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Analysis of energy consumption for microwave hopper dryer on a pilot scale

, &
Pages 1171-1182 | Received 12 Jun 2022, Accepted 19 Sep 2022, Published online: 28 Sep 2022

References

  • Christoph, T. H.; Julian, P.; Thomas, H. J. U.; Jörg, F. Improving the Energy Efficiency of Industrial Drying Processes: A Computational Fluid Dynamics Approach. Procedia Manuf. 2019, 33, 422–429. DOI: 10.1016/j.promfg.2019.04.05.
  • Paula Filippin, A.; Molina Filho, L.; Fadel, V.; Mauro, M. A. Thermal Intermittent Drying of Apples and Its Effects on Energy Consumption. Dry. Technol. 2018, 36, 1662–1677. DOI: 10.1080/07373937.2017.1421549.
  • Brito, R. C.; Bettega, R.; Freire, J. T. Energy Analysis of Intermittent Drying in the Spouted Bed. Dry. Technol. 2019, 37, 1498–1510. DOI: 10.1080/07373937.2018.1512503.
  • Kast, O.; Schaibl, T.; Bonten, C. Interdependence of Hygroscopic Polymer Characteristics and Drying Kinetics during Desiccant Drying and Microwave Supported Drying. Int. Polym. Process. 2020, 35, 376–384. DOI: 10.3139/217.3960.
  • Carvalho, G. R.; Monteiro, R. L.; Laurindo, J. B.; Augusto, P. E. D. Microwave and Microwave-Vacuum Drying as Alternatives to Convective Drying in Barley Malt Processing. Innov. Food Sci. Emerg. Technol. 2021, 73, 102770. DOI: 10.1016/j.ifset.2021.102770.
  • Teo, C. L.; Jamaluddin, H.; Zain, N. A. M.; Idris, A. Biodiesel Production via Lipase Catalysed Transesterification of Microalgae Lipids from Tetraselmis sp. Renewable Energy 2014, 68, 1–5. DOI: 10.1016/j.renene.2014.01.027.
  • Choe, S. Y.; Moon, S. B. A Study on the Thermal Characteristics of the Low Temperature Vacuum Dryer by Material Layers. J. Korean Soc. Mar. Eng. 2002, 26, 226–232.
  • MotevaliMinaei, A.; Banakar, S.; Ghobadian, A. B.; Khoshtaghaza, M. H. Comparison of Energy Parameters in Various Dryers. Energy Convers. Manage. 2014, 87, 711–725. DOI: 10.1016/j.enconman.2014.07.012.
  • Oghbaei, M.; Mirzaee, O. Microwave versus Conventional Sintering: A Review of Fundamentals, Advantages and Applications. J. Alloys Compd. 2010, 494, 175–189. DOI: 10.1016/j.jallcom.2010.01.068.
  • Monteiro, R. L.; Carciofi, B. A. M.; Marsaioli, A.; Laurindo, J. B. How to Make a Microwave Vacuum Dryer with Turntable. J. Food Eng. 2015, 166, 276–284. DOI: 10.1016/j.jfoodeng.2015.06.029.
  • Vasilakos, N. P.; Magalhaes, F. Microwave Drying of Polymers. J. Microwave Power 1984, 19, 135–144. DOI: 10.1080/16070658.1984.11689360.
  • Plaza-Gonzalez, P.; Monzo-Cabrera, J.; Catala-Civera, J. M.; Sanchez-Hernandez, D. Effect of Mode-Stirrer Configurations on Dielectric Heating Performance in Multimode Microwave Applicators. IEEE Trans. Microw. Theory Technol. 2005, 53, 1699–1706. DOI: 10.1109/TMTT.2005.847066.
  • Huang, W.; Zhang, Y.; Qiu, H.; Huang, J.; Chen, J.; Gao, L.; Omran, M.; Chen, G. Drying Characteristics of Ammonium Polyvanadate under Microwave Heating Based on a Thin-Layer Drying Kinetics Fitting Model. J. Mater. Res. Technol. 2022, 19, 1497–1509. DOI: 10.1016/j.jmrt.2022.05.127.
  • Peyravi, A.; Hashisho, Z.; Crompton, D.; Anderson, J. E. Enhanced Microwave Regeneration of a Polymeric Adsorbent through Carbon Nanotubes Deposition. Sep. Purif. Technol. 2021, 278, 119616. DOI: 10.1016/j.seppur.2021.119616.
  • Bows, J. R. Variable Frequency Microwave Heating of Food. J. Microw. Power Electromagn. Energy 1999, 34, 227–238. DOI: 10.1080/08327823.1999.11688410.
  • Watanabe, S.; Karakawa, M.; Hashimoto, O. Computer Simulation of Temperature Distribution of Frozen Material Heated in a Microwave Oven. IEEE Trans. Microw. Theory Technol. 2010, 58, 1196–1204. DOI: 10.1109/TMTT.2010.2045526.
  • Javier, G.; Reyes, R. D. L.; Jara, A.; Reyes, E. Microwave Energy Transduction Using Planar Technology. Electron. Lett. 2015, 51, 499–501. DOI: 10.1049/el.2014.3816.
  • Sun, T. Key Models of Heat and Mass Transfer of Asphalt Mixtures Based on Microwave Heating. Dry. Technol. 2014, 32, 1568–1574. DOI: 10.1080/07373937.2014.909842.
  • He, J.; Yang, Y.; Zhu, H.; Li, K.; Yao, W.; Huang, K. Microwave Heating Based on Two Rotary Waveguides to Improve Efficiency and Uniformity by Gradient Descent Method. Appl. Therm. Eng. 2020, 178, 115594. DOI: 10.1016/j.applthermaleng.2020.115594.
  • Zhang, Y.; Zhao, Z.; Li, H.; Li, X.; Gao, X. Numerical Modeling and Optimal Design of Microwave-Heating Falling Film Evaporation. Chem. Eng. Sci. 2021, 240, 116681. DOI: 10.1016/j.ces.2021.116681.
  • Salvi, D.; Boldor, D.; Ortego, J.; Aita, G. M.; Sabliov, C. M. Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS. J. Microw. Power Electromagn. Energy 2010, 44, 187–197. DOI: 10.1080/08327823.2010.11689787.
  • Tamang, S.; Aravindan, S. 3D Numerical Modelling of Microwave Heating of SiC Susceptor. Appl. Therm. Eng. 2019, 162, 114250–114259. DOI: 10.1016/j.applthermaleng.2019.114250.
  • Kelen, Á.; Ress, S.; Nagy, T.; Pallai, E.; Pintye-Hódi, K. Pintye-Hodi K. Mapping of Temperature Distribution in Pharmaceutical Microwave Vacuum Drying. Powder 2006, 162, 133–137. DOI: 10.1016/j.powtec.2005.12.001.
  • Bae, S.-H.; Jeong, M.-G.; Kim, J.-H.; Lee, W.-S. A Continuous Power-Controlled Microwave Belt Drier Improving Heating Uniformity. IEEE Microw. Wireless Compon. Lett. 2017, 27, 527–529. DOI: 10.1109/LMWC.2017.2690849.
  • Zhao, H.; Li, H.; Li, X.; Gao, X. Process Intensification for Improving the Uniformity and Efficiency of Microwave Heating Reactor by Bubbles-Enhanced Flow Method. Appl. Therm. Eng. 2021, 197, 117346. DOI: 10.1016/j.applthermaleng.2021.117346.
  • Gunasekaran, S.; Yang, H.-W. Optimization of Pulsed Microwave Heating. J. Food Eng. 2007, 78, 1457–1462. DOI: 10.1016/j.jfoodeng.2006.01.018.
  • Jindarat, W.; Rattanadecho, P.; Vongpradubchai, S.; Pianroj, Y. Analysis of Energy Consumption in Drying Process of Non-Hygroscopic Porous Packed Bed Using a Combined Multi-Feed Microwave-Convective Air and Continuous Belt System (CMCB). Dry. Technol. 2011, 29, 926–938. DOI: 10.1080/07373937.2011.560318.
  • Vieira, M. G. A.; Estrella, L.; Rocha, S. C. S. Energy Efficiency and Drying Kinetics of Recycled Paper Pulp. Dry. Technol. 2007, 25, 1639–1648. DOI: 10.1080/07373930701590806.
  • Jafari Kalantari, H.; Azadbakht, D. M. Energy Consumption and Qualitative Evaluation of a Continuous Band Microwave Dryer for Rice Paddy Drying. Energy 2018, 142, 647–654. DOI: 10.1016/j.energy.2017.10.065.
  • Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. Energy and Exergy Analyses of the Spray Drying Process of Fish Oil Microencapsulation. Biosyst. Eng. 2012, 111, 229–241. DOI: 10.1016/j.biosystemseng.2011.12.001.
  • Kassem, A. S.; Shokr, A. Z.; El-Mahdy, A. R.; Aboukarima, A. M.; Hamed, E. Y. Comparison of Drying Characteristics of Thompson Seedless Grapes Using Combined Microwave Oven and Hot Air Drying. J. Saudi Soc. Agric. Sci. 2011, 10, 33–40. DOI: 10.1016/j.jssas.2010.05.001.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.