Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 8
48
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Evolution of the microstructure of broad bean seeds under low-temperature vacuum environment

ORCID Icon, , , , , , & show all
Pages 1278-1290 | Received 21 Jul 2022, Accepted 28 Oct 2022, Published online: 11 Nov 2022

References

  • Kumar, C.; Karim, A.; Saha, S. C.; Joardder, M. U. H.; Biswas, D. Multiphysics Modelling of Convective Drying of Food Materials. Proc. Global Eng. Sci. Technol. Conf. 2012, 5, 78–84. DOI: 10.3923/rjpscience.2012.78.84.
  • Rahman, M. M.; Joardder, M. U. H.; Karim, A. Non-Destructive Investigation of Cellular Level Moisture Distribution and Morphological Changes during Drying of a Plant-Based Food Material. Biosyst. Eng. 2018, 169, 126–138. DOI: 10.1016/j.biosystemseng.2018.02.007.
  • Khan, M.; I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Investigation of Bound and Free Water in Plant-Based Food Material Using NMR T2 Relaxometry. Innov. Food Sci. Emerg. Technol. 2016, 38, 252–261. DOI: 10.1016/j.ifset.2016.10.015.
  • Caurie, M. Bound Water: Its Definition, Estimation and Characteristics. Int. J. Food Sci. Technol. 2011, 46, 930–934. DOI: 10.1111/j.1365-2621.2011.02581.x.
  • Khan, M. I. H.; Joardder, M. U. H.; Kumar, C.; Karim, M. A. Multiphase Porous Media Modelling: A Novel Approach to Predicting Food Processing Performance. Crit. Rev. Food Sci. Nutr. 2018, 58, 528–546. DOI: 10.1080/10408398.2016.1197881.
  • Srikiatden, J.; Roberts, J. S. Predicting Moisture Profiles in Potato and Carrot during Convective Hot Air Drying Using Isothermally Measured Effective Diffusivity. J. Food Eng. 2008, 84, 516–525. DOI: 10.1016/j.jfoodeng.2007.06.009.
  • Khan, M. I. H.; Wellard, R. M.; Nagy, S. A.; Joardder, M. U. H.; Karim, M. A. Experimental Investigation of Bound and Free Water Transport Process during Drying of Hygroscopic Food Material. Int. J. Therm. Sci. 2017, 117, 266–273. DOI: 10.1016/j.ijthermalsci.2017.04.006.
  • Karunasena, H. C. P.; Hesami, P.; Senadeera, W.; Gu, Y. T.; Brown, R. J.; Oloyede, A. Scanning Electron Microscopic Study of Microstructure of Gala Apples during Hot Air Drying. Drying Technol. 2014, 32, 455–468. DOI: 10.1080/07373937.2013.837479.
  • Zhang, X.-L.; Zhu, K.; Wang, Y.-B.; Li, Y.-J.; Zhang, Y.-X. Coupling Effect of Dehydration Characteristics and Microstructure of Broad Bean Seeds under Low-Temperature Vacuum Environment. Drying Technol. 2020, 40, 1–13. DOI: 10.1080/07373937.2020.1783550.
  • Liu, W.-C.; Duan, X.; Ren, G.-Y.; Liu, L.-L.; Liu, Y.-H. Optimization of Microwave Freeze Drying Strategy of Mushrooms (Agaricus Bisporus) Based on Porosity Change Behavior. Drying Technol. 2017, 35, 1327–1336. DOI: 10.1080/07373937.2017.1319851.
  • Chen, A.-Q..; Achkar, G. E.; Liu, B.; Bennacer, R. Experimental Study on Moisture Kinetics and Microstructure Evolution in Apples during High Power Microwave Drying Process. J. Food Eng. 2021, 292, 110362. DOI: 10.1016/j.jfoodeng.2020.110362.
  • Sansiribhan, S.; Devahastin, S.; Soponronnarit, S. Generalized Microstructural Change and Structure-Quality Indicators of a Food Product Undergoing Different Drying Methods and Conditions. J. Food Eng. 2012, 109, 148–154. DOI: 10.1016/j.jfoodeng.2011.09.019.
  • Olenskyj, A. G.; Donis-González, I. R.; Bornhorst, G. M. Nondestructive Characterization of Structural Changes during in Vitro Gastric Digestion of Apples Using 3D Time-Series Micro-Computed Tomography. J. Food Sci. 2020, 267, 109692. DOI: 10.1016/j.jfoodeng.2019.109692.
  • Yuan, Y.-J.; Han, S.-M.; Xu, Y.-Y.; Yang, J.-Q.; Zhang, G.-A.; Shi, J.-W. Effects of Drying Methods on Microstructure of Juicy Peach. Sci. Technol. Food Indust. 2022, 2020, 1–13. DOI: 10.13386/j.issn1002-0306.2021120157.
  • Sansiribhan, S.; Devahastin, S.; Soponronnarit, S. Quantitative Evaluation of Microstructural Changes and Their Relations with Some Physical Characteristics of Food during Drying. J. Food Sci. 2010, 75, 453–461. DOI: 10.1111/j.1750-3841.2010.01739.x.
  • Segura-Ponce, L. A.; Soto-Pardo, V. A.; Guzmán-Meza, M. F. Characterization of Apples (Granny Smith) Dried in Industrial Equipment and the Relationship with Drying Mechanisms. Food Struct. 2019, 21, 100119. DOI: 10.1016/j.foostr.2019.100119.
  • Wang, Y.-B.; Wang, X.-X.; Li, X.-Q.; Zhang, X.-L.; Zhang, J.-J.; Zhu, K. Changes in the Microstructure of Broad Bean Seeds along the Path of Water Migration. J. Refrigerat. 2022, 43, 159–166. DOI: 10.3969/j.issn.0253-4339.2022.02.159.
  • Joardder, M. U. H.; Kumar, C.; Brown, R. J.; Karim, M. A. A Micro-Level Investigation of the Solid Displacement Method for Porosity Determination of Dried Food. J. Food Eng. 2015, 166, 156–164. DOI: 10.1016/j.jfoodeng.2015.05.034.
  • Halder, A.; Datta, A. K.; Spanswick, R. M. Water Transport in Cellular Tissues during Thermal Processing. AIChE J. 2011, 57, 2574–2588. DOI: 10.1002/aic.
  • Dadmohammadi, Y.; Kantzas, A.; Yu, X.-L.; Datta, A. K. Estimating Permeability and Porosity of Plant Tissues: Evolution from Raw to the Processed States of Potato. J. Food Eng. 2020, 277, 109912. DOI: 10.1016/j.jfoodeng.2020.109912.
  • Rahman, M. M.; Gu, Y. T.; Karim, M. A. Development of Realistic Food Microstructure considering the Structural Heterogeneity of Cells and Intercellular Space. Food Struct. 2018, 15, 9–16. DOI: 10.1016/j.foostr.2018.01.002.
  • Pieczywek, P. M.; Zdunek, A. Automatic Classification of Cells and s of Apple Tissue. Comput. Electron. Agric. 2012, 81, 72–78. DOI: 10.1016/j.compag.2011.11.006.
  • Schudel, S.; Prawiranto, K.; Defraeye, T. Comparison of Freezing and Convective Dehydrofreezing of Vegetables for Reducing Cell Damage. J. Food Sci. 2021, 293, 110376. DOI: 10.1016/j.jfoodeng.2020.110376.
  • Ren, X.; Li, L.-L.; Chen, J.-L.; Zhao, L.-J.; Liu, P.-P.; Cao, W.-W.; Ren, A.-Q.; Ren, G.-Y.; Bhandari, B.; Duan, X. Drying Characteristics and Quality of Chinese Yam by Multiphase Microwave Drying Based on Fractal Theory. Drying Technol. 2022, 1–14. DOI: 10.1080/07373937.2021.2024220.
  • Nguyen, T. T.; Rossello, C.; Ratti, C. Understanding Air-Drying Behavior of Potato Peel Waste. Drying Technol. 2022, 1–12. DOI: 10.1080/07373937.2022.2062603.
  • Quevedo, R.; Carlos, L. G.; Aguilera, J. M.; Cadoche, L. Description of Food Surfaces and Microstructural Changes Using Fractal Image Texture Analysis. J. Food Eng. 2002, 53, 361–371. DOI: 10.1016/S0260-8774(01)00177-7.
  • Lewicki, P. P.; Pawlak, G. Effect of Drying on Microstructure of Plant Tissue. Drying Technol. 2003, 21, 657–683. DOI: 10.1081/DRT-120019057.
  • Mayor, L.; Silva, M. A.; Sereno, A. M. Microstructural Changes during Drying of Apple Slices. Drying Technol. 2005, 23, 2261–2276. DOI: 10.1080/07373930500212776.
  • Wang, N.; Brennan, J. G. Changes in Structure, Density and Porosity of Potato during Dehydration. J. Food Eng. 1995, 24, 61–76. DOI: 10.1016/0260-8774(94)p1608-z.
  • Kerdpiboon, S.; Devahastin, S. Fractal Characterization of Some Physical Properties of a Food Product under Various Drying Conditions. Drying Technol. 2007, 25, 135–146. DOI: 10.1080/07373930601160973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.