Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 8
268
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

A model based study of the drying and shrinkage behavior of a ceramic green body

, , , &
Pages 1365-1382 | Received 10 Sep 2022, Accepted 25 Nov 2022, Published online: 13 Dec 2022

References

  • Kowalski, S. J.; Banaszak, J. Modeling and Experimental Identification of Cracks in Porous Materials During Drying. Dry. Technol. 2013, 31, 1388–1399. DOI: 10.1080/07373937.2013.796484.
  • Mancuhan, E.; Özen, S.; Sayan, P.; Sargut, S. T. Experimental Investigation of Green Brick Shrinkage Behavior with Bigot’s Curves. Dry. Technol. 2016, 34, 1535–1545. DOI: 10.1080/07373937.2015.1135340.
  • Scherer, G. W. Theory of Drying. J. Am. Ceram. Soc. 1990, 73, 3–14. DOI: 10.1111/j.1151-2916.1990.tb05082.x.
  • Defraeye, T. Advanced Computational Modelling for Drying processes – A Review. Appl. Energy 2014, 131, 323–344. DOI: 10.1016/j.apenergy.2014.06.027.
  • Kowalski, S. J.; Pawłowski, A. Modeling of Kinetics in Stationary and Intermittent Drying. Dry. Technol. 2010, 28, 1023–1031. DOI: 10.1080/07373937.2010.497095.
  • Heydari, M.; Khalili, K.; Ahmadi-Brooghani, Y. Influence of Convective Intermittent Drying Schemes on Drying Induced Stress–Strain of a 3D Clay Object. AIChE J. 2020, 66, 66. DOI: 10.1002/aic.16985.
  • Murugesan, K.; Suresh, H. N.; Seetharamu, K. N.; Narayana, P. A. A.; Sundararajan, T. A Theoretical Model of Brick Drying as a Conjugate Problem. Int. J. Heat Mass Transfer. 2001, 44, 4075–4086. [Database] DOI: 10.1016/S0017-9310(01)00065-5.
  • da Silva, W. P.; da Silva, L. D.; de Oliveira Farias, V. S.; da Silva E Silva, C. Water Migration in Clay Slabs During Drying: A Three-Dimensional Numerical Approach. Ceram. Int. 2013, 39, 4017–4030. DOI: 10.1016/j.ceramint.2012.10.252.
  • Lallemant, L.; Petit, J.; Lalanne, S.; Landais, S.; Trombert, S.; Vernhet, L.; Viroulaud, R. Modeling of the Green Body Drying Step to Obtain Large Size Transparent Magnesium-Aluminate Spinel Samples. J. Eur. Ceram. Soc. 2014, 34, 791–799. DOI: 10.1016/j.jeurceramsoc.2013.10.003.
  • Jabbari, M.; Hattel, J. Modeling Coupled Heat and Mass Transfer during Drying in Tape Casting with a Simple Ceramics–Water System. Dry. Technol. 2016, 34, 244–253. DOI: 10.1080/07373937.2015.1045602.
  • Jarque, J. C.; Segarra, C.; Cantavella, V.; Mondragón, R. Non-Isothermal Modeling of Drying Kinetics of Ceramic Tiles. Dry. Technol. 2016, 34, 761–772. DOI: 10.1080/07373937.2015.1076837.
  • Kim, D.; Son, G.; Kim, S. Numerical Analysis of Convective Drying of a Moving Moist Object. Int. J. Heat Mass Transfer. 2016, 99, 86–94. DOI: 10.1016/j.ijheatmasstransfer.2016.03.025.
  • Lauro, N.; Oummadi, S.; Alzina, A.; Nait-Ali, B.; Smith, D. S. Computer Model of Drying Behaviour of Ceramic Green Bodies with Particular Reference to Moisture Content Dependent Properties. J. Eur. Ceram. Soc. 2021, 41, 7321–7329. DOI: 10.1016/j.jeurceramsoc.2021.07.042.
  • Katekawa, M. E.; Silva, M. A. A Review of Drying Models Including Shrinkage Effects. Dry. Technol. 2006, 24, 5–20. DOI: 10.1080/07373930500538519.
  • Hammouda, I.; Mihoubi, D. Modeling of Thermo-Hydro-Viscoelastic Behavior of a Partially Saturated Ceramic Material During Drying. Dry. Technol. 2014, 32, 1219–1230. DOI: 10.1080/07373937.2014.895009.
  • Heydari, M.; Khalili, K.; Ahmadi-Brooghani, S. Y. More Comprehensive 3D Modeling of Clay-like Material Drying. AIChE J. 2018, 64, 1469–1478. DOI: 10.1002/aic.16027.
  • Itaya, Y.; Hanai, H.; Kobayashi, N.; Nakagawa, T. Drying-Induced Strain–Stress and Deformation of Thin Ceramic Plate. Chem. Eng. 2020, 4, 9–14. DOI: 10.3390/chemengineering4010009.
  • Islam, M. R.; Mujumdar, A. S. Role of Product Shrinkage in Drying Rate Predictions Using a Liquid Diffusion Model. Int. Commun. Heat Mass Transfer. 2003, 30, 391–400. DOI: 10.1016/S0735-1933(03)00057-5.
  • Barbosa de Lima, A. G.; Barbosa da Silva, J.; Almeida, G. S.; Nascimento, J. J. S.; Tavares, F. V. S.; Silva,.; V.; S. Clay Products Convective Drying: Foundations, Modeling and Applications. Adv. Struct. Mater. 2016, 63, 43–70.
  • da Silva Nascimento, J. J.; Luna, C. B. B.; Costa, R. F.; Barbieri, L. F. P.; Bezerra, E. Evaluation of Red Clay and Ball Clay Drying Using Transient Three-Dimensional Mathematical Modeling: Volumetric Shrinkage and Moisture Content. Mater. Res. Expr. 2019, 6, Article number: 095206, 1–10.
  • Madiouli, J.; Lecomte, D.; Nganya, T.; Chavez, S.; Sghaier, J.; Sammouda, H. A Method for Determination of Porosity Change from Shrinkage Curves of Deformable Materials. Dry. Technol. 2007, 25, 621–628. DOI: 10.1080/07373930701227185.
  • Joardder, M. U. H.; Karim, M. A. Development of a Porosity Prediction Model Based on Shrinkage Velocity and Glass Transition Temperature. Dry. Technol. 2019, 37, 1988–2004. DOI: 10.1080/07373937.2018.1555540.
  • Adrover, A.; Brasiello, A.; Ponso, G. A Moving Boundary Model for Food Isothermal Drying and Shrinkage: General Setting. J. Food Eng. 2019, 244, 178–191. DOI: 10.1016/j.jfoodeng.2018.09.018.
  • Nait-Ali, B.; Oummadi, S.; Portuguez, E.; Alzina, A.; Smith, D. S. Thermal Conductivity of Ceramic Green Bodies During Drying. J. Eur. Ceram. Soc. 2017, 37, 1839–1846. DOI: 10.1016/j.jeurceramsoc.2016.12.011.
  • da Silva Almeida, G.; Barbosa Da Silva, J.; Joaquina, E.; Silva, C.; Swarnakar, R.; de Araújo Neves, G.; Barbosa De Lima, A. G. Heat and Mass Transport in an Industrial Tunnel Dryer: Modeling and Simulation Applied to Hollow Bricks. Appl. Therm. Eng. 2013, 55, 78–86. DOI: 10.1016/j.applthermaleng.2013.02.042.
  • Siemens Process Systems Engineering. gPROCESS. www.psenterprise.com/products/gproms. 2022, 1997–2022.
  • Jhider, N.; Bagané, M. Moisture Sorption Isotherms and Isosteric Heat of Sorption of Tunisian Clay Product. Heat Mass Transfer. 2019, 55, 571–579. DOI: 10.1007/s00231-018-2428-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.