Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 9
335
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Synergistic combination of cryoprotectants for high freeze-dried survival rate and viable cell counts of Streptococcus thermophilus

, , , , , , , , , , & show all
Pages 1444-1453 | Received 14 Jul 2022, Accepted 04 Dec 2022, Published online: 20 Jan 2023

References

  • Sehrawat, R.; Abdullah, S.; Khatri, P.; Kumar, L.; Kumar, A.; A.; Mujumdar, S. Role of Drying Technology in Probiotic Encapsulation and Impact on Food Safety. Drying Technol. 2022, 40, 1562–1581. DOI: 10.1080/07373937.2022.2044844.
  • Wang, Y.; Li, W.; Lu, M.; Zhang, C. Study on the Nucleoside Degradation Ability of Lactic Acid Bacteria from Different Sources. China Dairy Ind. 2021, 49, 74. DOI: 10.19827/j.issn1001-2230.2021.05.001.
  • Fan, H.; Zhang, M.; Mujumdar, A. S.; Liu, Y. Effect of Different Drying Methods Combined with Fermentation and Enzymolysis on Nutritional Composition and Flavor of Chicken Bone Powder. Drying Technol. 2021, 39, 1240–1250. DOI: 10.1080/07373937.2021.1894440.
  • Halim, M.; Mohd Mustafa, N. A.; Othman, M.; Wasoh, H. M.; Kapri, R.; Ariff, A. B. Effect of Encapsulant and Cryoprotectant on the Viability of Probiotic Pediococcus acidilactici ATCC 8042 during Freeze-Drying and Exposure to High Acidity, Bile Salts and Heat. LWT–Food Sci. Technol. 2017, 81, 210–216. DOI: 10.1016/j.lwt.2017.04.009.
  • Behboudi-Jobbehdar, S.; Soukoulis, C.; Yonekura, L.; Fisk, I. Optimization of Spray-Drying Process Conditions for the Production of Maximally Viable Microencapsulated L. acidophilus NCIMB 701748. Drying Technol. 2013, 31, 1274–1283. DOI: 10.1080/07373937.2013.788509.
  • Sharman, M.; W.; Read, A.; Castle, L.; Gilbert, J. Levels of di-(2-Ethylhexyl) Phthalate and Total Phthalate Esters in Milk, Cream, Butter and Cheese. Food Addit. Contam. Part A 1994, 11.
  • Lu, Y.; Huang, L.; Yang, T.; Lv, F.; Lu, Z. Optimization of a Cryoprotective Medium to Increase the Viability of Freeze-Dried Streptococcus thermophilus by Response Surface Methodology. Lwt 2017, 80, 92–97. DOI: 10.1016/j.lwt.2017.01.044.
  • Qi, K.; Chen, H.; Wan, H.; Hu, M.; Wu, Y. Response Surface Optimization of Lyoprotectant from Amino Acids and Salts for Bifidobacterium Bifidum during Vacuum Freeze-Drying. Acta Univ. Cibiniensis. Series E: Food Technol. 2017, 21, 3–10. DOI: 10.1515/aucft-2017-0009.
  • Wa, Y.; Zhang, C. C.; Sun, G.; Qu, H. Q.; Chen, D. W.; Huang, Y. J.; Gu, R. X. Effect of Amino Acids on Free Exopolysaccharide Biosynthesis by Streptococcus thermophilus 937 in Chemically Defined Medium. J. Dairy Sci. 2022, 105, 6460–6468. DOI: 10.3168/jds.2022-21814.
  • Guo, S.; Wu, T.; Peng, C.; Wang, J.; Sun, T.; Zhang, H. Metabolic Footprint Analysis of Volatile Metabolites by Gas Chromatography-Ion Mobility Spectrometry to Discriminate between Different Fermentation Temperatures during Streptococcus thermophilus Milk Fermentation. J. Dairy Sci. 2021, 104, 8541–8553. DOI: 10.3168/jds.2020-19555.
  • Xu, Z.; Guo, Q.; Zhang, H.; Xiong, Z.; Zhang, X.; Ai, L. Structural Characterisation of EPS of Streptococcus thermophilus S-3 and Its Application in Milk Fermentation. Int. J. Biol. Macromol. 2021, 178, 263–269. DOI: 10.1016/j.ijbiomac.2021.02.173.
  • Estilarte, M. L.; Tymczyszyn, E. E.; Serradell, M. d l Á.; Carasi, P. Freeze-Drying of Enterococcus durans: Effect on Their Probiotics and Biopreservative Properties. Lwt 2021, 137, 110496. DOI: 10.1016/j.lwt.2020.110496.
  • Romyasamit, C.; Saengsuwan, P.; Boonserm, P.; Thamjarongwong, B.; Singkhamanan, K. Optimization of Cryoprotectants for Freeze-Dried Potential Probiotic Enterococcus faecalis and Evaluation of Its Storage Stability. Drying Technol. 2021, 1–10. DOI: 10.1080/07373937.2021.1931294.
  • Yang, K.; Zhu, Y.; Qi, Y.; Zhang, T.; Liu, M.; Zhang, J.; Wei, X.; Fan, M.; Zhang, G. Analysis of Proteomic Responses of Freeze-Dried Oenococcus oeni to Access the Molecular Mechanism of Acid Acclimation on Cell Freeze-Drying Resistance. Food Chem. 2019, 285, 441–449. DOI: 10.1016/j.foodchem.2019.01.120.
  • Wang, W.; Chen, M.; Wu, J.; Wang, S. Hypothermia Protection Effect of Antifreeze Peptides from Pigskin Collagen on Freeze-Dried Streptococcus Thermophiles and Its Possible Action Mechanism. LWT–Food Sci. Technol. 2015, 63, 878–885. DOI: 10.1016/j.lwt.2015.04.007.
  • Gwak, H. J.; Lee, J. H.; Kim, T. W.; Choi, H. J.; Jang, J. Y.; Lee, S. I.; Park, H. W. Protective Effect of Soy Powder and Microencapsulation on Freeze-Dried Lactobacillus brevis WK12 and Lactococcus lactis WK11 during Storage. Food Sci. Biotechnol. 2015, 24, 2155–2160. DOI: 10.1007/s10068-015-0287-5.
  • Chen, H.; Niu, J.; Shu, G.; Wan, H. Optimization of Freeze-Dried Starter for Yogurt by Full Factorial Experimental Design. Acta Univ. Cibiniensis. Series E: Food Technol. 2015, 19, 27–38. DOI: 10.1515/aucft-2015-0012.
  • Archacka, M.; Białas, W.; Dembczyński, R.; Olejnik, A.; Sip, A.; Szymanowska, D.; Celińska, E.; Jankowski, T.; Olejnik, A.; Rogodzińska, M. Method of Preservation and Type of Protective Agent Strongly Influence Probiotic Properties of Lactococcus lactis: A Complete Process of Probiotic Preparation Manufacture and Use. Food Chem. 2019, 274, 733–742. DOI: 10.1016/j.foodchem.2018.09.033.
  • Termont, S.; Vandenbroucke, K.; Iserentant, D.; Neirynck, S.; Steidler, L.; Remaut, E.; Rottiers, P. Intracellular Accumulation of Trehalose Protects Lactococcus lactis from Freeze-Drying Damage and Bile Toxicity and Increases Gastric Acid Resistance. Appl. Environ. Microbiol. 2006, 72, 7694–7700. DOI: 10.1128/AEM.01388-06.
  • Chen, X.; Zhao, R. F.; Tao, Z. Q. Preparation of Streptococcus Thermophilus grx90 Lyoprotectant. China Dairy Ind. 2020, 48, 10–14. DOI: 10.19827/j.issn1001-2230.2020.03.002.
  • Liu, G.; Liang, Q.; Song, X. M.; Zhang, Y. Optimization of Extracellular Polysaccharide Production by Streptococcus thermophilus QF48 Using Plackett-Burman and Box-Behnken Design. Food Sci. 2019, 40, 136–143.
  • Giulio, B. D.; Orlando, P.; Barba, G.; Coppola, R.; Rosa, M. D.; Sada, A.; Prisco, P. P. D.; Nazzaro, F. Use of Alginate and Cryo-Protective Sugars to Improve the Viability of Lactic Acid Bacteria after Freezing and Freeze-Drying. World J. Microbiol. Biotechnol. 2005, 21, 739–746. DOI: 10.1007/s11274-004-4735-2.
  • Kanmani, P.; Kumar, R. S.; Yuvaraj, N.; Paari, K. A.; Pattukumar, V.; Arul, V. Cryopreservation and Microencapsulation of a Probiotic in Alginate-Chitosan Capsules Improves Survival in Simulated Gastrointestinal Conditions. Biotechnol. Bioproc. E 2011, 16, 1106–1114. DOI: 10.1007/s12257-011-0068-9.
  • Wolff, E.; Gibert, H. Atmospheric freeze-drying: experimentation and modelisation, 1990.
  • Carvalho, A. S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F. X.; Gibbs, P. Effects of Addition of Sucrose and Salt, and of Starvation upon Thermotolerance and Survival during Storage of Freeze-Dried Lactobacillus delbrueckii Ssp Bulgaricus. J. Food Sci. 2003, 68, 2538–2541. DOI: 10.1111/j.1365-2621.2003.tb07057.x.
  • Raspo, M. A.; Gomez, C. G.; Andreatta, A. E. Optimization of Antioxidant, Mechanical and Chemical Physical Properties of Chitosan-Sorbitol-Gallic Acid Films by Response Surface Methodology. Polym. Test. 2018, 70, 180–187. DOI: 10.1016/j.polymertesting.2018.07.003.
  • Lee, S.-B.; Kim, D. H.; Park, H. D. Effects of Protectant and Rehydration Conditions on the Survival Rate and Malolactic Fermentation Efficiency of Freeze-Dried Lactobacillus plantarum JH287. Appl. Microbiol. Biotechnol. 2016, 100, 7853–7863. DOI: 10.1007/s00253-016-7509-5.
  • Jiang, W. X.; Cui, S. M.; Mao, B. Y. Optimization of Lyoprotectants for High-Density Freeze-Drying Bifidobacterium breve. Food Ferment. Ind. 2020, 46, 31–36. DOI: 10.13995/j.cnki.11-1802/ts.023657.
  • Sun, Y. High-Density Cultivation of Heterofermentive Lactobacillus and Methods to Improve the Freeze-Drying Survival Rate. Ph.D. Dissertation, Jiang Nan University, WU XI, PR China, 2021.
  • R, K. Glycine Betaine Confers Enhanced Osmotolerance and Cryotolerance on Listeria monocytogenes. J. Bacteriol. 1994, 176, 426–431.
  • Stachura, S. S.; Malajczuk, C. J.; Mancera, R. L. Does Sucrose Change Its Mechanism of Stabilization of Lipid Bilayers during Desiccation? Influences of Hydration and Concentration. Langmuir 2019, 35, 15389–15400. DOI: 10.1021/acs.langmuir.9b03086.
  • Vuist, J.-E.; Boom, R. M.; Schutyser, M. A. I. Solute Inclusion and Freezing Rate during Progressive Freeze Concentration of Sucrose and Maltodextrin Solutions. Drying Technol. 2021, 39, 1285–1293. DOI: 10.1080/07373937.2020.1742151.
  • Leslie, S. B.; Israeli, E.; Lighthart, B.; Crowe, J. H.; Crowe, L. M. Trehalose and Sucrose Protect Both Membranes and Proteins in Intact Bacteria during Drying. Appl. Environ. Microbiol. 1995, 61, 3592–3597. DOI: 10.1128/aem.61.10.3592-3597.1995.
  • Saarela, M.; Virkajarvi, I.; Alakomi, H. L.; Mattila-Sandholm, T.; Vaari, A.; Suomalainen, T.; Matto, J. Influence of Fermentation Time, Cryoprotectant and Neutralization of Cell Concentrate on Freeze-Drying Survival, Storage Stability, and Acid and Bile Exposure of Bifidobacterium animalis Ssp. lactis Cells Produced without Milk-Based Ingredients. J. Appl. Microbiol. 2005, 99, 1330–1339. DOI: 10.1111/j.1365-2672.2005.02742.x.
  • Hellrup, J.; Mahlin, D. Pharmaceutical Micro-Particles Give Amorphous Sucrose Higher Physical Stability. Int. J. Pharm. 2011, 409, 96–103. DOI: 10.1016/j.ijpharm.2011.02.031.
  • Kawai, K.; Suzuki, T. Stabilizing Effect of Four Types of Disaccharide on the Enzymatic Activity of Freeze-Dried Lactate Dehydrogenase: Step by Step Evaluation from Freezing to Storage. Pharm. Res. 2007, 24, 1883–1890. DOI: 10.1007/s11095-007-9312-6.
  • Kawai, M.; Tsuchiya, A.; Ishida, J.; Yoda, N.; Yashiki-Yamasaki, S.; Katakura, Y. Suppression of Lactate Production in Fed-Batch Culture of Some Lactic Acid Bacteria with Sucrose as the Carbon Source. J. Biosci. Bioeng. 2020, 129, 535–540. DOI: 10.1016/j.jbiosc.2019.11.009.
  • de Giori, G. S.; de Valdez, G. F.; de Ruiz Holgado, A. P.; Oliver, G. Effect of pH and Temperature on the Proteolytic Activity of Lactic Acid Bacteria. J. Dairy Sci. 1985, 68, 2160–2164. DOI: 10.3168/jds.S0022-0302(85)81085-7.
  • Carvalho, A. S.; Silva, J.; Ho, P.; Teixeira, P.; Malcata, F. X.; Lait, P. G. J. Protective Effect of Sorbitol and Monosodium Glutamate during Storage of Freeze-Dried Lactic Acid Bacteria. Lait 2003, 83, 203–210.
  • Ye, A. Functional Properties of Milk Protein Concentrates: Emulsifying Properties, Adsorption and Stability of Emulsions. Int. Dairy J. 2011, 21, 14–20. DOI: 10.1016/j.idairyj.2010.07.005.
  • Dalgleish, D. G.; Corredig, M. The Structure of the Casein Micelle of Milk and Its Changes during Processing. Annu. Rev. Food Sci. Technol. 2012, 3, 449–467. DOI: 10.1146/annurev-food-022811-101214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.