Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 9
135
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Performance analysis of a heat pump dryer with separate heat recovery using an energy, exergy, and economic methodology

ORCID Icon, , , , , , & show all
Pages 1411-1425 | Received 28 Sep 2022, Accepted 03 Dec 2022, Published online: 12 Jan 2023

References

  • Hofmann, N.; Borchert, H. Influence of Fuel Quality and Storage Conditions on Oxygen Consumption in Two Different Wood Chip Assortments – Determination of the Storage-Stable Moisture Content. Fuel 2022, 309, 122196. DOI: 10.1016/j.fuel.2021.122196.
  • Minea, V. Heat-Pump–Assisted Drying: Recent Technological Advances and R&D Needs. Dry. Technol. 2013, 31, 1177–1189. DOI: 10.1080/07373937.2013.78162.
  • Ploteau, J.; Noel, H.; Fuentes, A.; Glouannec, P.; Louarn, S. Sludge Convection Drying Process: Numerical Modeling of a Heat Pump Assisted Continuous Dryer. Dry. Technol. 2020, 38, 1261–1273. DOI: 10.1080/07373937.2019.1630425.
  • Khanlari, A.; Sözen, A.; Sahin, B.; Nicola, G. D.; Afshari, F. Experimental Investigation on Using Building Shower Drain Water as a Heat Source for Heat Pump Systems. Energy Sources. Part A 2020, 1–13. DOI: 10.1080/15567036.2020.1796845.
  • Aktaş, M.; Khanlari, A.; Aktekeli, B.; Amini, A. Analysis of a New Drying Room for Heat Pump Mint Leaves Dryer. Int. J. Hydrog. Energy 2017, 42, 18034–18044. DOI: 10.1016/j.ijhydene.2017.03.007.
  • Zhu, Z.; Yang, Z.; Wang, F. Experimental Research on Intermittent Heat Pump Drying with Constant and Time-Variant Intermittency Ratio. Dry. Technol. 2016, 34, 1630–1640. DOI: 10.1080/07373937.2016.1138966.
  • Lee, Y. H.; Chin, S. K.; Chung, B. K. Drying Characteristics and Quality of Lemon Slices Dried under Coulomb Force-Assisted Heat Pump Drying. Dry. Technol. 2021, 39, 765–776. DOI: 10.1080/07373937.2020.1718692.
  • Song, M.; Xu, X.; Mao, N.; Deng, S.; Xu, Y. Energy Transfer Procession in an Air Source Heat Pump Unit during Defrosting. Appl. Energy 2017, 204, 679–689. DOI: 10.1016/j.enbuild.2018.01.004.
  • Chin, S. K.; Law, C. L. Product Quality and Drying Characteristics of Intermittent Heat Pump Drying of Ganoderma Tsugae Murrill. Dry. Technol. 2010, 28, 1457–1465. DOI: 10.1080/07373937.2010.482707.
  • Yousaf, K.; Liu, H.; Gao, X.; Liu, C.; Abbas, A.; Nyalala, I.; Ahmad, M.; Ameen, M.; Chen, K. Influence of Environmental Conditions on Drying Efficiency and Heat Pump Performance in Closed and Open Loop Drying of Paddy. Dry. Technol. 2020, 38, 2217–2230. DOI: 10.1080/07373937.2019.1691011.
  • Tunçkal, C.; Yüksel, A.; Coşkun, S. Exergy Analysis of Banana Drying Process via a Closed-Loop Air Source Heat Pump System. Energy Sources. Part A 2022, 44, 6777–6792. DOI: 10.1080/15567036.2022.2101716.
  • Zhao, Y.; Zhu, Z.; Zhao, F. Simultaneous Control of Drying Temperature and Superheat for an Enclosed Air-Loop Heat Pump Dryer. Appl. Therm. Eng. 2016, 93, 571–579. DOI: 10.1016/j.applthermaleng.2015.09.117.
  • Ren, Y.; Wang, P.; Wu, W.; Wang, H.; Yang, Y.; Yang, Q. Study on the Effects of Auxiliary Condenser Operation Parameters on the Performance of Closed Loop Heat Pump Drying System. Int. J. Refrig. 2022, 136, 17–26. DOI: 10.1016/j.ijrefrig.2022.01.010.
  • Singh, A.; Sarkar, J.; Sahoo, R. R. Experimental Investigation on Novel Heat Pump System for Combined Drying and Air Conditioning for Arid Climate. Dry. Technol. 2022, 41, 1–12. DOI: 10.1080/07373937.2022.2066117.
  • Afshari, F.; Sahin, B.; Khanlari, A.; Manay, E. Experimental Optimization and Investigation of Compressor Cooling Fan in Air to Water Heat Pump. Heat Trans. Res. 2020, 51, 319–331. DOI: 10.1615/HeatTransRes.2019030709.
  • Afshari, F.; Sözen, A.; Khanlari, A.; Tuncer, A. D.; Ali, H. M. Experimental Investigation of Effect of Refrigerant Gases, Compressor Lubricant and Operating Conditions on Performance of a Heat Pump. J. Cent. South Univ. 2021, 28, 3556–3568. DOI: 10.1007/s11771-021-4875-7.
  • Liu, Z.; Duan, Z.; Zhang, L.; Liu, S. Theoretical Study on the Applicable Refrigerant of Enclose Air-Loop Heat Pump Drying System. Energy Conserv. (China) 2022, 41, 32–35. DOI: 10.3969/j.issn.1004-7948.2022.05.010.
  • Bell, I. H.; Wronski, J.; Quoilin, S.; Lemort, V. Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 2014, 53, 2498–2508. DOI: 10.1021/ie4033999.
  • Ganjehsarabi, H.; Dincer, I.; Gungor, A. Exergoeconomic Analysis of a Heat Pump Tumbler Dryer. Dry. Technol. 2014, 32, 352–360. DOI: 10.1080/07373937.2013.829853.
  • Ergün, A.; Ceylan, İ.; Acar, B.; Erkaymaz, H. Energy–Exergy–ANN Analyses of Solar-Assisted Fluidized Bed Dryer. Dry. Technol. 2017, 35, 1711–1720. DOI: 10.1080/07373937.2016.1271338.
  • Liu, M.; Wang, S.; Liu, R.; Yan, J. Energy, Exergy and Economic Analyses on Heat Pump Drying of Lignite. Dry. Technol. 2019, 37, 1688–1703. DOI: 10.1080/07373937.2018.1531883.
  • Erbay, Z.; Hepbasli, A. Advanced Exergy Analysis of a Heat Pump Drying System Used in Food Drying. Dry. Technol. 2013, 31, 802–810. DOI: 10.1080/07373937.2012.763044.
  • Fazelpour, F.; Morosuk, T. Exergo-Economic Analysis of Carbon Dioxide Transcritical Refrigeration Machines. Int. J. Refrig 2014, 38, 128–139. DOI: 10.1016/j.ijrefrig.2013.09.016.
  • Erbay, Z.; Hepbasli, A. Advanced Exergoeconomic Evaluation of a Heat Pump Food Dryer. Biosyst. Eng. 2014, 124, 29–39. DOI: 10.1016/j.biosystemseng.2014.06.008.
  • Chinese Pharmacopoeia Commission. Chinese Pharmacopoeia (Part 1). China Medical Science Press, 2020, 107. Chinese Pharmacopoeia (chp.org.cn)
  • Arif, A.; Neslihan, C.; Ebru, H.; Filiz, I.; Zafer, E. Exergoeconomic Analysis of Plum Drying in a Heat Pump Conveyor Dryer. Dry. Technol. 2010, 28, 1385–1395. DOI: 10.1080/07373937.2010.482843.
  • Atalay, H. Comparative Assessment of Solar and Heat Pump Dryers with Regards to Exergy and Exergoeconomic Performance. Energy 2019, 189, 116180–116180. DOI: 10.1016/j.energy.2019.116180.
  • Guo, H.; Xu, M.; Wu, Z.; Feng, C.; Chen, Y.; Luo, J.; Zhang, W.; Xiong, Y. Kinetics and Variation of Volatile Components of Atractylodes Macrocephala Rhizoma during Hot-Air Drying. Zhongguo Zhong Yao Za Zhi 2022, 47, 922–930. DOI: 10.19540/j.cnki.cjcmm.20211110.303.
  • Dong, X.; Zhao, H.; Kong, F.; Han, J.; Xu, Q. Parameter Optimization of Multistage Closed Series Heat Pump Drying System. Appl. Therm. Eng. 2022, 216, 119124. DOI: 10.1016/j.applthermaleng.2022.119124.
  • Singh, A.; Sarkar, J.; Rashmi, R. S. Experimentation on Solar-Assisted Heat Pump Dryer: Thermodynamic, Economic and Exergoeconomic Assessments. Sol. Energy 2020, 208, 150–159. DOI: 10.1016/j.solener.2020.07.081.
  • Electricity Prices for business, December 2021, http://www.GlobalPetrolPrices.com (accessed Sept 5, 2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.