Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 9
260
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical study of the effect of potato cuboids separation in a convective drying

, , &
Pages 1426-1443 | Received 03 May 2022, Accepted 03 Dec 2022, Published online: 21 Dec 2022

References

  • Islam, R.; Ho, J. C.; Mujumdar, A. S.   Convective Drying with Time-Varying Heat Input: Simulation Results. Dry. Technol. 2003, 21, 1333–1356. DOI: 10.1081/DRT-120023187.
  • Hussain, M. M.; Dincer, I. Numerical Simulation of Two-Dimensional Heat and Moisture Transfer during Drying of a Rectangular Object. Numer. Heat Transfer A: Appl. 2003, 43, 867–878. DOI: 10.1080/713838150.
  • Franco do Carmo, J. E.; Barbosa de Lima, A. G. Drying of Lentil Including Shrinkage: A Numerical Simulation. Dry. Technol. 2005, 23, 1977–1992. DOI: 10.1080/07373930500210424.
  • Lemus-Mondaca, R. A.; Zambra, C. E.; Vega-Gálvez, A.; Moraga, N. O. Coupled 3D Heat and Mass Transfer Model for Numerical Analysis of Drying Process in Papaya Slices. J. Food Eng. 2013, 116, 109–117. DOI: 10.1016/j.jfoodeng.2012.10.050.
  • Musielak, G.; Śliwa, T. Modeling and Numerical Simulation of Clays Cracking during Drying. Dry. Technol. 2015, 33, 1758–1767. DOI: 10.1080/07373937.2015.1036287.
  • Ju, H.-Y.; Law, C.-L.; Fang, X.-M.; Xiao, H.-W.; Liu, Y.-H.; Gao, Z.-J. Drying Kinetics and Evolution of the Sample’s Core Temperature and Moisture Distribution of Yam Slices (Dioscorea Alata L.) during Convective Hot-Air Drying. Dry. Technol. 2016, 34, 1297–1306. DOI: 10.1080/07373937.2015.1105814.
  • Khan, M. I. H.; Welsh, Z.; Gu, Y.; Karim, M. A.; Bhandari, B. Modelling of Simultaneous Heat and Mass Transfer Considering the Spatial Distribution of Air Velocity during Intermittent Microwave Convective Drying. Int. J. Heat Mass Transf. 2020, 153, 119668. DOI: 10.1016/j.ijheatmasstransfer.2020.119668.
  • Ju, H.-Y.; Vidyarthi, S. K.; Karim, M. A.; Yu, X.-L.; Zhang, W.-P.; Xiao, H.-W. Drying Quality and Energy Consumption Efficient Improvements in Hot Air Drying of Papaya Slices by Step-down Relative Humidity Based on Heat and Mass Transfer Characteristics and 3D Simulation. Dry. Technol. 2022, 1–17. DOI: 10.1080/07373937.2022.2099416.
  • Tzempelikos, D. A.; Mitrakos, D.; Vouros, A. P.; Bardakas, A. V.; Filios, A. E.; Margaris, D. P. Numerical Modeling of Heat and Mass Transfer during Convective Drying of Cylindrical Quince Slices. J. Food Eng. 2015, 156, 10–21. DOI: 10.1016/j.jfoodeng.2015.01.017.
  • Kaya, A.; Aydin, O.; Dincer, I. Numerical Modeling of Forced-Convection Drying of Cylindrical Moist Objects. Numer. Heat Transfer A: Appl. 2007, 51, 843–854. DOI: 10.1080/10407780601112753.
  • Sabarez, H. T. Computational Modelling of the Transport Phenomena Occurring during Convective Drying of Prunes. J. Food Eng. 2012, 111, 279–288. DOI: 10.1016/j.jfoodeng.2012.02.021.
  • Chandramohan, V. P. Experimental Analysis and Simultaneous Heat and Moisture Transfer with Coupled CFD Model for Convective Drying of Moist Object. Int. J. Comput. Methods Eng. Sci. Mech. 2016, 17, 59–71. DOI: 10.1080/15502287.2016.1147506.
  • Ateeque, M.; Mishra, R. K.; Chandramohan, V. P.; Talukdar.; P.; Udayraj. Numerical Modeling of Convective Drying of Food with Spatially Dependent Transfer Coefficient in a Turbulent Flow Field. Int. J. Therm. Sci. 2014, 78, 145–157. DOI: 10.1016/j.ijthermalsci.2013.12.003.
  • Datta, A. K. Porous Media Approaches to Studying Simultaneous Heat and Mass Transfer in Food Processes. I: Problem Formulations. J. Food Eng. 2007, 80, 80–95. DOI: 10.1016/j.jfoodeng.2006.05.013.
  • Curcio, S. A Multiphase Model to Analyze Transport Phenomena in Food Drying Processes. Dry. Technol. 2010, 28, 773–785. DOI: 10.1080/07373937.2010.482697.
  • Defraeye, T.; Radu, A. Convective Drying of Fruit: A Deeper Look at the Air-Material Interface by Conjugate Modeling. Int. J. Heat Mass Transf. 2017, 108, 1610–1622. DOI: 10.1016/j.ijheatmasstransfer.2017.01.002.
  • Erriguible, A.; Bernada, P.; Couture, F.; Roques, M.-A. Modeling of Heat and Mass Transfer at the Boundary Between a Porous Medium and its Surroundings. Dry. Technol. 2005, 23, 455–472. DOI: 10.1081/DRT-200054119.
  • Betchen, L.; Straatman, A. G.; Thompson, B. E. A Nonequilibrium Finite-Volume Model for Conjugate Fluid/Porous/Solid Domains. Numer. Heat Transfer A: Appl. 2006, 49, 543–565. DOI: 10.1080/10407780500430967.
  • Zhu, Y.; Wang, P.; Sun, D.; Zhiguo Qu, Z.; Yu, B. Multiphase Porous Media Model with Thermo-Hydro and Mechanical Bidirectional Coupling for Food Convective Drying. Int. J. Heat Mass Transf. 2021, 175, 121356. DOI: 10.1016/j.ijheatmasstransfer.2021.121356.
  • Selimefendigil, F.; Özcan, S.; Hakan, Ç. Convective Drying of a Moist Porous Object under the Effects of a Rotating Cylinder in a Channel. J. Therm. Anal. Calorim. 2020, 141, 1569–1590. DOI: 10.1007/s10973-019-09140-5.
  • Lamnatou, C.; Papanicolaou, E.; Belessiotis, V.; Kyriakis, N. Numerical Study of the Interaction among a Pair of Blunt Plates Subject to Convective Drying – A Conjugate Approach. Int. J. Therm. Sci. 2010, 49, 2467–2482. DOI: 10.1016/j.ijthermalsci.2010.06.017.
  • Aktaş, M.; Adnan Sözen, A.; Amini, A.; Khanlari, A. Experimental Analysis and CFD Simulation of Infrared Apricot Dryer with Heat Recovery. Dry. Technol. 2017, 35, 766–783. DOI: 10.1080/07373937.2016.1212871.
  • Clausen, J. R. Entropically Damped Form of Artificial Compressibility for Explicit Simulation of Incompressible Flow. Phys. Rev. E 2013, 87, 1–12. DOI: 10.1103/PhysRevE.87.013309.
  • Chorin, A. J. A Numerical Method for Solving Incompressible Viscous Flow Problems. Comput. Phys. 1967, 2, 12–26. 1967DOI: 10.1016/0021-9991(67)90037-X.
  • Gottlieb, B. D.; Turkel, E. Dissipative Two-Four Methods for Time-Dependent Problems. Math. Comp. 1976, 30, 703–723. DOI: 10.1090/S0025-5718-1976-0443362-6.
  • Salinas-Vázquez, M.; de la Lama, M. A.; Vicente, W.; Martínez, E. Large Eddy Simulation of a Flow Through Circular Tube Bundle. Appl. Math. Modell. 2011, 35, 4393–4406. DOI: 10.1016/j.apm.2011.03.003.
  • Salinas-Vázquez, M.; Vicente, W.; Martínez, E.; Barrios, E. Large Eddy Simulation of a Confined Square Cavity with Natural Convection Based on Compressible Flow Equations. Int. J. Heat Fluid Flow 2011, 32, 876–888. DOI: 10.1016/j.ijheatfluidflow.2011.07.002.
  • Martínez, E.; Vicente, W.; Salinas-Vazquez, M.; Carvajal, I.; Alvarez, M. Numerical Simulation of Turbulent Air Flow on a Single Isolated Finned Tube Module with Periodic Boundary Conditions. Int. J. Therm. Sci. 2015, 92, 58–71. DOI: 10.1016/j.ijthermalsci.2015.01.024.
  • Le, H.; Moin, P.; Kim, J. Direct Numerical Simulation of Turbulent Flow Over a Backward-Facing Step. J. Fluid Mech. 1997, 330, 349–374. DOI: 10.1017/S0022112096003941.
  • Khan, M. H.; Sooraj, P.; Sharma, A.; Agrawal, A. Flow around a Cube for Reynolds Numbers Between 500 and 55,000. Exp. Therm. Fluid Sci. 2018, 93, 257–271. DOI: 10.1016/j.expthermflusci.2017.12.013.
  • Lyn, D. A.; Einav, S.; Rodi, W.; Park, J.-H. A Laser-Doppler Velocimetry Study of Ensemble-Averaged Characteristics of the Turbulent Near Wake of a Square Cylinder. J. Fluid Mech. 1995, 304, 285–319. DOI: 10.1017/S0022112095004435.
  • Poinsot, T. J.; Lelef, S. K. Boundary Conditions for Direct Simulations Compressible Viscous Flows. Comput. Phys. 1992, 101, 104–129. DOI: 10.1016/0021-9991(92)90046-2.
  • Igarashi, T. Heat Transfer from a Square Prism to an Air Stream. Int. J. Heat Mass Transf. 1985, 28, 175–181. DOI: 10.1016/0017-9310(85)90019-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.