162
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Drying of non-chemically prepared nanofibrillated cellulose from lime residue: Effects of drying methods on fiber morphology, physicochemical properties and redispersibility

, & ORCID Icon
Pages 1031-1045 | Received 22 Jul 2022, Accepted 20 Dec 2022, Published online: 12 Jan 2023

References

  • Missoum, K.; Belgacem, M. N.; Bras, J. Nanofibrillated Cellulose Surface Modification: A Review. Materials (Basel) 2013, 6, 1745–1766. DOI: 10.3390/ma6051745.
  • de Souza, H. J. B.; de Barros Fernandes, R. V. B.; Borges, S. V.; Felix, P. H. C.; Viana, L. C.; Lago, A. M. T.; Botrel, D. A. Utility of Blended Polymeric Formulations Containing Cellulose Nanofibrils for Encapsulation and Controlled Release of Sweet Orange Essential Oil. Food Bioprocess. Technol. 2018, 11, 1188–1198. DOI: 10.1007/s11947-018-2082-9.
  • Lu, Q.; Yu, X.; Yagoub, A. E. A.; Wahia, H.; Zhou, C. Application and Challenge of Nanocellulose in the Food Industry. Food Biosci. 2021, 43, 101285. DOI: 10.1016/j.fbio.2021.101285.
  • de Souza, H. J. B.; de Abreu Dessimoni, A. L.; Ferreira, M. L. A.; Botrel, D. A.; Borges, S. V.; Viana, L. C.; de Oliveira, C. R.; Lago, A. M. T.; de Barros Fernandes, R. V. Microparticles Obtained by Spray-Drying Technique Containing Ginger Essential Oil with the Addition of Cellulose Nanofibrils Extracted from the Ginger Vegetable Fiber. Drying Technol. 2021, 39, 1912–1926. DOI: 10.1080/07373937.2020.1851707.
  • Azeredo, H. M. C.; Rosa, M. F.; Mattoso, L. H. C. Nanocellulose in Bio-Based Food Packaging Applications. Ind. Crops Prod. 2017, 97, 664–671. DOI: 10.1016/j.indcrop.2016.03.013.
  • Kaur, G.; Sharma, S.; Mir, S. A.; Dar, B. N. Nanobiocomposite Films: A “Greener Alternate” for Food Packaging. Food Bioprocess. Technol. 2021, 14, 1013–1027. DOI: 10.1007/s11947-021-02634-x.
  • Choublab, P.; Winuprasith, T. Storage Stability of Mayonnaise Using Mangosteen Nanofibrillated Cellulose as a Single Emulsifier. JFAT 2018, 4, 59–66.
  • Kunchitwaranont, A.; Chiewchan, N.; Devahastin, S. Use and Understanding of the Role of Spontaneously Formed Nanocellulosic Fiber from Lime (Citrus aurantifolia Swingle) Residues to Improve Stability of Sterilized Coconut Milk. J. Food Sci. 2019, 84, 3674–3681. DOI: 10.1111/1750-3841.14937.
  • Saffarionpour, S. Nanocellulose for Stabilization of Pickering Emulsions and Delivery of Nutraceuticals and Its Interfacial Adsorption Mechanism. Food Bioprocess. Technol. 2020, 13, 1292–1328. DOI: 10.1007/s11947-020-02481-2.
  • Yu, B.; Zeng, X.; Wang, L.; Regenstein, J. M. Preparation of Nanofibrillated Cellulose from Grapefruit Peel and Its Application as Fat Substitute in Ice Cream. Carbohydr. Polym. 2021, 254, 117415. DOI: 10.1016/j.carbpol.2020.117415.
  • Tibolla, H.; Pelissari, F. M.; Martins, J. T.; Lanzoni, E. M.; Vicente, A. A.; Menegalli, F. C.; Cunha, R. L. Banana Starch Nanocomposite with Cellulose Nanofibers Isolated from Banana Peel by Enzymatic Treatment: In Vitro Cytotoxicity Assessment. Carbohydr. Polym. 2019, 207, 169–179. DOI: 10.1016/j.carbpol.2018.11.079.
  • Pradhan, D.; Jaiswal, A. K.; Jaiswal, S. Emerging Technologies for the Production of Nanocellulose from Lignocellulosic Biomass. Carbohydr. Polym. 2022, 285, 119258. DOI: 10.1016/j.carbpol.2022.119258.
  • Deepa, B.; Abraham, E.; Cherian, B. M.; Bismarck, A.; Blaker, J. J.; Pothan, L. A.; Leao, A. L.; de Souza, S. F.; Kottaisamy, M. Structure, Morphology and Thermal Characteristics of Banana Nano Fibers Obtained by Steam Explosion. Bioresour. Technol. 2011, 102, 1988–1997. DOI: 10.1016/j.biortech.2010.09.030.
  • Jongaroontaprangsee, S.; Chiewchan, N.; Devahastin, S. Production of Nanofibrillated Cellulose with Superior Water Redispersibility from Lime Residues via a Chemical-Free Process. Carbohydr. Polym. 2018, 193, 249–258. DOI: 10.1016/j.carbpol.2018.04.008.
  • Khukutapan, D.; Chiewchan, N.; Devahastin, S. Characterization of Nanofibrillated Cellulose Produced by Different Methods from Cabbage Outer Leaves. J. Food Sci. 2018, 83, 1660–1667. DOI: 10.1111/1750-3841.14160.
  • Peng, Y.; Gardner, D. J.; Han, Y. Drying Cellulose Nanofibrils: In Search of a Suitable Method. Cellulose 2012, 19, 91–102. DOI: 10.1007/s10570-011-9630-z.
  • Wang, Z.; Zhu, W.; Huang, R.; Zhang, Y.; Jia, C.; Zhao, H.; Chen, W.; Xue, Y. Fabrication and Characterization of Cellulose Nanofiber Aerogels Prepared via Two Different Drying Techniques. Polymers 2020, 12, 2583. DOI: 10.3390/polym12112583.
  • Yang, G.; Ma, G.; He, M.; Ji, X.; Li, W.; Youn, H. J.; Lee, H. L.; Chen, J. Comparison of Effects of Sodium Chloride and Potassium Chloride on Spray Drying and Redispersion of Cellulose Nanofibrils Suspension. Nanomaterials 2021, 11, 439. DOI: 10.3390/nano11020439.
  • Missoum, K.; Bras, J.; Belgacem, M. N. Water Redispersible Dried Nanofibrillated Cellulose by Adding Sodium Chloride. Biomacromolecules 2012, 13, 4118–4125. DOI: 10.1021/bm301378n.
  • Panchal, P.; Ogunsona, E.; Mekonnen, T. Trends in Advanced Functional Material Applications of Nanocellulose. Processes 2018, 7, 10. DOI: 10.3390/pr7010010.
  • Xu, Y.; Xu, Y.; Chen, H.; Gao, M.; Yue, X.; Ni, Y. Redispersion of Dried Plant Nanocellulose: A Review. Carbohydr. Polym. 2022, 294, 119830. DOI: 10.1016/j.carbpol.2022.119830.
  • Niinivaara, E.; Cranston, E. D. Bottom-up Assembly of Nanocellulose Structures. Carbohydr. Polym. 2020, 247, 116664. DOI: 10.1016/j.carbpol.2020.116664.
  • Ding, Q.; Zeng, J.; Wang, B.; Tang, D.; Chen, K.; Gao, W. Effect of Nanocellulose Fiber Hornification on Water Fraction Characteristics and Hydroxyl Accessibility during Dehydration. Carbohydr. Polym. 2019, 207, 44–51. DOI: 10.1016/j.carbpol.2018.11.075.
  • Velásquez-Cock, J.; Gómez, H. B. E.; Posada, P.; Serpa, G. A.; Gómez, H. C.; Castro, C.; Gañán, P.; Zuluaga, R. Poly (Vinyl Alcohol) as a Capping Agent in Oven Dried Cellulose Nanofibrils. Carbohydr. Polym. 2018, 179, 118–125. DOI: 10.1016/j.carbpol.2017.09.089.
  • Velásquez-Cock, J.; Gañán, P.; Gómez H, C.; Posada, P.; Castro, C.; Dufresne, A.; Zuluaga, R. Improved Redispersibility of Cellulose Nanofibrils in Water Using Maltodextrin as a Green, Easily Removable and Non-Toxic Additive. Food Hydrocolloids 2018, 79, 30–39. DOI: 10.1016/j.foodhyd.2017.12.024.
  • Sungsinchai, S.; Niamnuy, C.; Wattanapan, P.; Charoenchaitrakool, M.; Devahastin, S. Spray Drying of Non-Chemically Prepared Nanofibrillated Cellulose: Improving Water Redispersibility of the Dried Product. Int. J. Biol. Macromol. 2022, 207, 434–442. DOI: 10.1016/j.ijbiomac.2022.02.153.
  • Hiasa, S.; Kumagai, A.; Endo, T.; Edashige, Y. Prevention of Aggregation of Pectin‐Containing Cellulose Nanofibers Prepared from Mandarin Peel. JFST 2016, 72, 17–26. DOI: 10.2115/fiberst.2016-0006.
  • Goering, H. K.; Van Soest, P. J. Forage Fiber Analyses. US Department of Agriculture: Washington, DC. 1970. https://naldc.nal.usda.gov/download/CAT87209099/PDF (accessed on Mar 25, 2022).
  • Ahmed, A. E. R.; Labavitch, J. M. A Simplified Method for Accurate Determination of Cell Wall Uronide Content. J. Food Biochem. 1978, 1, 361–365. DOI: 10.1111/j.1745-4514.1978.tb00193.x.
  • Kintner, P. K.; Buren, J. P. Carbohydrate Interference and Its Correction in Pectin Analysis Using the m-Hydroxydiphenyl Method. J. Food Sci. 1982, 47, 756–759. DOI: 10.1111/j.1365-2621.1982.tb12708.x.
  • Li, J.; Wei, X.; Wang, Q.; Chen, J.; Chang, G.; Kong, L.; Su, J.; Liu, Y. Homogeneous Isolation of Nanocellulose from Sugarcane Bagasse by High Pressure Homogenization. Carbohydr. Polym. 2012, 90, 1609–1613. DOI: 10.1016/j.carbpol.2012.07.038.
  • Yang, X.; Han, F.; Xu, C.; Jiang, S.; Huang, L.; Liu, L.; Xia, Z. Effects of Preparation Methods on the Morphology and Properties of Nanocellulose (NC) Extracted from Corn Husk. Ind. Crops Prod. 2017, 109, 241–247. DOI: 10.1016/j.indcrop.2017.08.032.
  • Martelli-Tosi, M.; Masson, M. M.; Silva, N. C.; Esposto, B. S.; Barros, T. T.; Assis, O. B. G.; Tapia-Blácido, D. R. Soybean Straw Nanocellulose Produced by Enzymatic or Acid Treatment as a Reinforcing Filler in Soy Protein Isolate Films. Carbohydr. Polym. 2018, 198, 61–68. DOI: 10.1016/j.carbpol.2018.06.053.
  • Judith, R.-B. D.; Pámanes-Carrasco, G. A.; Delgado, E.; Rodríguez-Rosales, M. D. J.; Medrano-Roldán, H.; Reyes-Jáquez, D. Extraction Optimization and Molecular Dynamic Simulation of Cellulose Nanocrystals Obtained from Bean Forage. Biocatal. Agric. Biotechnol. 2022, 43, 102443. DOI: 10.1016/j.bcab.2022.102443.
  • Ververis, C.; Georghiou, K.; Danielidis, D.; Hatzinikolaou, D. G.; Santas, P.; Santas, R.; Corleti, V. Cellulose, Hemicelluloses, Lignin and Ash Content of Some Organic Materials and Their Suitability for Use as Paper Pulp Supplements. Bioresour. Technol. 2007, 98, 296–301. DOI: 10.1016/j.biortech.2006.01.007.
  • Zain, N. F. M.; Yusop, S. M.; Ahmad, I. Preparation and Characterization of Cellulose and Nanocellulose from Pomelo (Citrus grandis) Albedo. J. Nutr. Food Sci. 2014, 5, 1000334. DOI: 10.4172/2155-9600.1000334.
  • Guillon, F.; Barry, J.-L.; Thibault, J.-F. Effect of Autoclaving Sugar-Beet Fibre on Its Physico-Chemial Properties and Its In-Vitro Vegradation by Human Faecal Bacteria. J. Sci. Food Agric. 1992, 60, 69–79. DOI: 10.1002/jsfa.2740600112.
  • Cherian, B. M.; Leão, A. L.; de Souza, S. F.; Thomas, S.; Pothan, L. A.; Kottaisamy, M. Isolation of Nanocellulose from Pineapple Leaf Fibres by Steam Explosion. Carbohydr. Polym. 2010, 81, 720–725. DOI: 10.1016/j.carbpol.2010.03.046.
  • Abraham, E.; Deepa, B.; Pothan, L. A.; Jacob, M.; Thomas, S.; Cvelbar, U.; Anandjiwala, R. Extraction of Nanocellulose Fibrils from Lignocellulosic Fibers: A Novel Approach. Carbohydr. Polym. 2011, 86, 1468–1475. DOI: 10.1016/j.carbpol.2011.06.034.
  • Sarfarazi, M.; Mohebbi, M. An Investigation into the Crystalline Structure, and the Rheological, Thermal, Textural and Sensory Properties of Sugar-Free Milk Chocolate: Effect of Inulin and Maltodextrin. Food Measure. 2020, 14, 1568–1581. DOI: 10.1007/s11694-020-00405-4.
  • Mariño, M.; da Silva, L. L.; Durán, N.; Tasic, L. Enhanced Materials from Nature: Nanocellulose from Citrus Waste. Molecules 2015, 20, 5908–5923. DOI: 10.3390/molecules20045908.
  • Žepič, V.; Fabjan, E. Š.; Kasunič, M.; Korošec, R. C.; Hančič, A.; Oven, P.; Perše, L. S.; Poljanšek, I. Morphological, Thermal, and Structural Aspects of Dried and Redispersed Nanofibrillated Cellulose (NFC). Holzforschung 2014, 68, 657–667. DOI: 10.1515/hf-2013-0132.
  • Charani, P. R.; Dehghani-Firouzabadi, M.; Afra, E.; Shakeri, A. Rheological Characterization of High Concentrated MFC Gel from Kenaf Unbleached Pulp. Cellulose 2013, 20, 727–740. DOI: 10.1007/s10570-013-9862-1.
  • Rodkantuk, K. Effect of Pectin on Water Redispersibility of Dried Nanofibrillated Cellulose from Fruit and Vegetable Residues. M. Eng. Special Research Project. Department of Food Engineering, King Mongkut’s University of Technology Thonburi: Bangkok, Thailand, 2018.
  • Chen, J.; Liang, R.-H.; Liu, W.; Liu, C.-M.; Li, T.; Tu, Z.-C.; Wan, J. Degradation of High-Methoxyl Pectin by Dynamic High Pressure Microfluidization and Its Mechanism. Food Hydrocolloids 2012, 28, 121–129. DOI: 10.1016/j.foodhyd.2011.12.018.
  • Khalil, H. P. S. A.; Ismail, H.; Rozman, H. D.; Ahmad, M. N. The Effect of Acetylation on Interfacial Shear Strength between Plant Fibres and Various Matrices. Eur. Polym. J. 2001, 37, 1037–1045. DOI: 10.1016/S0014-3057(00)00199-3.
  • Chen, W.; Yu, H.; Liu, Y.; Chen, P.; Zhang, M.; Hai, Y. Individualization of Cellulose Nanofibers from Wood Using High-Intensity Ultrasonication Combined with Chemical Pretreatments. Carbohydr. Polym. 2011, 83, 1804–1811. DOI: 10.1016/j.carbpol.2010.10.040.
  • Colom, X.; Carrillo, F. Crystallinity Changes in Lyocell and Viscose-Type Fibres by Caustic Treatment. Eur. Polym. J. 2002, 38, 2225–2230. DOI: 10.1016/S0014-3057(02)00132-5.
  • Impoolsup, T.; Chiewchan, N.; Devahastin, S. On the Use of Microwave Pretreatment to Assist Zero-Waste Chemical-Free Production Process of Nanofibrillated Cellulose from Lime Residue. Carbohydr. Polym. 2020, 230, 115630. DOI: 10.1016/j.carbpol.2019.115630.
  • Yongvanich, N. Isolation of Nanocellulose from Pomelo Fruit Fibers by Chemical Treatments. J. Nat. Fibers 2015, 12, 323–331. DOI: 10.1080/15440478.2014.920286.
  • Lopes, M. S.; Carneiro, M. E.; Bento, A. V.; Potulski, D. C.; de Muniz, G. I. B. Production and Characterization of Nanofibrilated Cellulose Powder. Sci. For. 2021, 49, e3210. DOI: 10.18671/scifor.v49n129.04.
  • Beck, S.; Bouchard, J.; Berry, R. Dispersibility in Water of Dried Nanocrystalline Cellulose. Biomacromolecules 2012, 13, 1486–1494. DOI: 10.1021/bm300191k.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.