Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 9
103
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Orange slice drying enhancement by intervention of control atmosphere coupled with vacuum condition—A new design and optimization strategy

, ORCID Icon & ORCID Icon
Pages 1498-1513 | Received 23 Feb 2022, Accepted 25 Dec 2022, Published online: 12 Jan 2023

References

  • Djekic, I.; Tomic, N.; Bourdoux, S.; Spilimbergo, S.; Smigic, N.; Udovicki, B.; Hofland, G.; Devlieghere, F.; Rajkovic, A. Comparison of Three Types of Drying (Supercritical CO2, Air and Freeze) on the Quality of Dried Apple – Quality Index Approach. LWT—Food Sci. Technol. 2018, 94, 64–72. DOI: 10.1016/j.lwt.2018.04.029.
  • Khan, M.; Imran, H.; Welsh, Z.; Gu, Y.; Karim, M. A.; Bhandari, B. Modelling of Simultaneous Heat and Mass Transfer considering the Spatial Distribution of Air Velocity during Intermittent Microwave Convective Drying. Int. J. Heat Mass Transf. 2020, 153, 119668. DOI: 10.1016/j.ijheatmasstransfer.2020.119668.
  • Hou, L.; Zhou, X.; Wang, S. Numerical Analysis of Heat and Mass Transfer in Kiwifruit Slices during Combined Radio Frequency and Vacuum Drying. Int. J. Heat Mass Transf. 2020, 154, 119704. DOI: 10.1016/j.ijheatmasstransfer.2020.119704.
  • Homayounfar, H.; Chayjan, R. A.; Sarikhani, H.; Kalvandi, R. Thermal, Physical and Chemical Properties of Lavender Leaves under near Infrared Vacuum, Multi-Stage Semi-Industrial Continuous and Open Sun Drying. Heat Mass Transf. 2019, 55, 3289–3299. DOI: 10.1007/s00231-019-02652-8.
  • Wang, J.; Law, C.-L.; Nema, P. K.; Zhao, J.-H.; Liu, Z.-L.; Deng, L.-Z.; Gao, Z.-J.; Xiao, H.-W. Pulsed Vacuum Drying Enhances Drying Kinetics and Quality of Lemon Slices. J. Food Eng. 2018, 224, 129–138. DOI: 10.1016/j.jfoodeng.2018.01.002.
  • Chakraborty, R.; Mondal, P. Effects of Intermittent CO2 Convection under Far-Infrared Radiation on Vacuum Drying of Pre-Osmodehydrated Watermelon. J. Sci. Food Agric. 2017, 97, 3822–3830. DOI: 10.1002/jsfa.8246.
  • Nadi, F.; Tzempelikos, D. Vacuum Drying of Apples (cv. Golden Delicious): Drying Characteristics, Thermodynamic Properties, and Mass Transfer Parameters. Heat Mass Transf. 2018, 54, 1853–1866. DOI: 10.1007/s00231-018-2279-5.
  • Ramli, A. S.; Basrawi, F.; Yusof, M. H. B.; Oumer, A. N.; Johari, N. A.; Muhamad, A.; Mamat, M. R.; Habib, K.; Ibrahim, T. K. Experimental Analysis on a Novel Low-Temperature Vacuum Drying with Induced Nucleation Technique for Dewatering Stingless Bees Honey. Dry. Technol. 2019, 37, 149–155. DOI: 10.1080/07373937.2018.1444634.
  • Alwazeer, D.; Ors, B. Reducing Atmosphere Drying as a Novel Drying Technique for Preserving the Sensorial and Nutritional Notes of Foods. J. Food Sci. Technol. 2019, 56, 3790–3800. DOI: 10.1007/s13197-019-03850-2.
  • Homayounfar, H.; Amiri Chayjan, R.; Sarikhani, H.; Kalvandi, R. Optimization of Different Drying Systems for Lavender Leaves Applying Response Surface Methodology. J. Agric. Sci. Technol. 2020, 22, 679–692.
  • Herbig, A. L.; Renard, C. M. Factors That Impact the Stability of Vitamin C at Intermediate Temperatures in a Food Matrix. Food Chem. 2017, 220, 444–451. DOI: 10.1016/j.foodchem.2016.10.012.
  • Deng, L.-Z.; Yang, X.-H.; Mujumdar, A. S.; Zhao, J.-H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z.-J.; Xiao, H.-W. Red Pepper (Capsicum annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. DOI: 10.1080/07373937.2017.1361439.
  • Liu, Y.; Wu, J.; Miao, S.; Chong, C.; Sun, Y. Effect of a Modified Atmosphere on Drying and Quality Characteristics of Carrots. Food Bioprocess Technol. 2014, 7, 2549–2559. DOI: 10.1007/s11947-014-1295-9.
  • Schössler, K.; Jäger, H.; Knorr, D. Novel Contact Ultrasound System for the Accelerated Freeze-Drying of Vegetables. Innov. Food Sci. Emerg. Technol. 2012, 16, 113–120. DOI: 10.1016/j.ifset.2012.05.010.
  • Cam, I. B.; Basunal Gulmez, H.; Eroglu, E.; Topuz, A. Strawberry Drying: Development of a Closed-Cycle Modified Atmosphere Drying System for Food Products and the Performance Evaluation of a Case Study. Dry. Technol. 2018, 36, 1460–1473. DOI: 10.1080/07373937.2017.1409233.
  • Liu, Y.-H.; Miao, S.; Wu, J.-Y.; Liu, J.-X. Drying and Quality Characteristics of Flos Lonicerae in Modified Atmosphere with Heat Pump System. J. Food Process Eng. 2014, 37, 37–45. DOI: 10.1111/jfpe.12057.
  • Fernandez, A.; Saffe, A.; Mazza, G.; Rodriguez, R. Nonisothermal Drying Kinetics of Biomass Fuels by Thermogravimetric Analysis under Oxidative and Inert Atmosphere. Dry. Technol. 2017, 35, 163–172. DOI: 10.1080/07373937.2016.1163265.
  • Majdi, H.; Esfahani, J. A.; Mohebbi, M. Optimization of Convective Drying by Response Surface Methodology. Comput. Electron. Agric. 2019, 156, 574–584. DOI: 10.1016/j.compag.2018.12.021.
  • Jangam, S. V.; Law, C. L.; Mujumdar, A. S. Drying of Foods, Vegetables and Fruits; CRC Press: Singapore, 2010; Vol. 1.
  • Yolmeh, M.; Jafari, S. M. Applications of Response Surface Methodology in the Food Industry Processes. Food Bioprocess Technol. 2017, 10, 413–433. DOI: 10.1007/s11947-016-1855-2.
  • Lu, Q.; Peng, Y.; Zhu, C.; Pan, S. Effect of Thermal Treatment on Carotenoids, Flavonoids and Ascorbic Acid in Juice of Orange cv. Cara Cara. Food Chem. 2018, 265, 39–48. DOI: 10.1016/j.foodchem.2018.05.072.
  • Alibas, I.; Yilmaz, A. Microwave and Convective Drying Kinetics and Thermal Properties of Orange Slices and Effect of Drying on Some Phytochemical Parameters. J. Therm. Anal. Calorim. 2022, 147, 8301–8321. DOI: 10.1007/s10973-021-11108-3.
  • Pacheco, C.; García-Martínez, E.; Moraga, G.; Piña, J.; Nazareno, M. A.; Martínez-Navarrete, N. Development of Dried Functional Foods: Stabilization of Orange Pulp Powder by Addition of Biopolymers. Powder Technol. 2020, 362, 11–16. DOI: 10.1016/j.powtec.2019.11.116.
  • Khanlari, Y.; Aroujalian, A.; Fazel, S.; Fathizadeh, M. An Experimental Work and Mathematical Modeling on Kinetic Drying of Tomato Pulp under Different Modified Atmosphere Conditions. Int. J. Food Prop. 2014, 17, 1–12. DOI: 10.1080/10942912.2011.576358.
  • Deng, L. Z.; Mujumdar, A. S.; Yang, W. X.; Zhang, Q.; Zheng, Z. A.; Wu, M.; Xiao, H. W. Hot Air Impingement Drying Kinetics and Quality Attributes of Orange Peel. J. Food Process. Preserv. 2020, 44, e14294. DOI: 10.1111/jfpp.14294.
  • Lyu, Y.; Bi, J.; Chen, Q.; Li, X.; Lyu, C.; Hou, H. Color, Carotenoids, and Peroxidase Degradation of Seed-Used Pumpkin Byproducts as Affected by Heat and Oxygen Content during Drying Process. Food Bioprocess Technol. 2020, 13, 1929–1939. DOI: 10.1007/s11947-020-02532-8.
  • Chayjan, R. A.; Alaei, B. New Model for Colour Kinetics of Plum under Infrared Vacuum Condition and Microwave Drying. Acta Sci. Pol. Technol. Aliment. 2016, 15, 131–144. DOI: 10.17306/J.AFS.2016.2.13.
  • Singleton, V. L.; Rossi, J. A. Colorimetry of Total Phenolics with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158.
  • Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a Free Radical Method to Evaluate Antioxidant Activity. LWT—Food Sci. Technol. 1995, 28, 25–30. DOI: 10.1016/S0023-6438(95)80008-5.
  • Cengel, Y. A. Introduction to Thermodynamics and Heat Transfer; McGraw-Hill: New York, 1997; Vol. 846.
  • Wang, Z.; Duan, X.; Li, L.; Ren, G.; Wu, T.; Chen, J.; Ang, Y.; Guo, J.; Zhao, M. Effects of Drying Temperature on the Drying Characteristics and Volatile Profiles of Citrus reticulata Blanco Peels under Two Stages of Maturity. Dry. Technol. 2021, 40, 2456–2469. DOI: 10.1080/07373937.2021.1907590.
  • Ramesh, M.; Wolf, W.; Tevini, D.; Jung, G. Studies on Inert Gas Processing of Vegetables. J. Food Eng. 1999, 40, 199–205. DOI: 10.1016/S0260-8774(99)00056-4.
  • Xiao, H.-W.; Law, C.-L.; Sun, D.-W.; Gao, Z.-J. Color Change Kinetics of American Ginseng (Panax quinquefolium) Slices during Air Impingement Drying. Dry. Technol. 2014, 32, 418–427. DOI: 10.1080/07373937.2013.834928.
  • Chaitanya Lakshmi, G. Food Coloring: The Natural Way. Res. J. Chem. Sci. 2014, 2231, 606X.
  • Cui, Z.-W.; Xu, S.-Y.; Sun, D.-W. Effect of Microwave-Vacuum Drying on the Carotenoids Retention of Carrot Slices and Chlorophyll Retention of Chinese Chive Leaves. Dry. Technol. 2004, 22, 563–575. DOI: 10.1081/DRT-120030001.
  • Macura, R.; Michalczyk, M.; Fiutak, G.; Maciejaszek, I. Effect of Freeze-Drying and Air-Drying on the Content of Carotenoids and Anthocyanins in Stored Purple Carrot. Acta Sci. Pol. Technol. Aliment. 2019, 18, 135–142. DOI: 10.17306/j.Afs.2019.0637.
  • Bozkir, H. Effects of Hot Air, Vacuum Infrared, and Vacuum Microwave Dryers on the Drying Kinetics and Quality Characteristics of Orange Slices. J. Food Process Eng. 2020, 43, e13485. DOI: 10.1111/jfpe.13485.
  • Özkan‐Karabacak, A.; Acoğlu, B.; Yolci Ömeroğlu, P.; Çopur, Ö. U. Microwave Pre‐Treatment for Vacuum Drying of Orange Slices: Drying Characteristics, Rehydration Capacity and Quality Properties. J. Food Process Eng. 2020, 43, e13511. DOI: 10.1111/jfpe.13511.
  • Kamiloglu, S.; Toydemir, G.; Boyacioglu, D.; Beekwilder, J.; Hall, R. D.; Capanoglu, E. A Review on the Effect of Drying on Antioxidant Potential of Fruits and Vegetables. Crit. Rev. Food Sci. Nutr. 2016, 56 Suppl 1, S110–S129. DOI: 10.1080/10408398.2015.1045969.
  • Albanese, D.; Cinquanta, L.; Cuccurullo, G.; Di Matteo, M. Effects of Microwave and Hot-Air Drying Methods on Colour, β-Carotene and Radical Scavenging Activity of Apricots. Int. J. Food Sci. Technol. 2013, 48, 1327–1333. DOI: 10.1111/ijfs.12095.
  • Sun, Y.; Shen, Y.; Liu, D.; Ye, X. Effects of Drying Methods on Phytochemical Compounds and Antioxidant Activity of Physiologically Dropped Un-Matured Citrus Fruits. LWT—Food Sci. Technol. 2015, 60, 1269–1275. DOI: 10.1016/j.lwt.2014.09.001.
  • Ghasemi, A.; Chayjan, R. A. Numerical Simulation of Vitamin C Degradation during Dehydration Process of Fresh Tomatoes. J. Food Process Eng. 2019, 42, e13189. DOI: 10.1111/jfpe.13189.
  • Herbig, A.-L.; Maingonnat, J.-F.; Renard, C. M. G. C. Oxygen Availability in Model Solutions and Purées during Heat Treatment and the Impact on Vitamin C Degradation. LWT—Food Sci. Technol. 2017, 85, 493–499. DOI: 10.1016/j.lwt.2016.09.033.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.