Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 11
148
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Numerical and experimental study on the drying process of iron ore in wagons

, , , &
Pages 1783-1802 | Received 10 Jan 2022, Accepted 23 Feb 2023, Published online: 06 Mar 2023

References

  • Leão, R. X. A.; Amorim, L. S.; Martins, M. F.; Junior, H. B.; Sarcinelli, E.; Mesquita, A. L. A. A Model for Velocity Streamlines of Airborne Dust Particles Spreading Caused by Free-Falling Bulk Materials. Power Tecnology 2020, 371, 190–194. DOI: 10.1016/j.powtec.2020.05.087.
  • Chaulya, S. K.; Chowdhury, A.; Kumar, S.; Singh, R. S.; Singh, S. K.; Singh, R. K.; Prasad, G. M.; K.; Mandal, S. K.; Banerjee, G. Fugitive Dust Emission Control Study for a Developed Smart Dry Fog System. J. Environ. Manage. 2021, 285, 0301–4797. DOI: 10.1016/j.jenvman.2021.112116.
  • Sun, H.; Li, A.; Wu, J. Entrained Air by Particle Plume: Comparison Between Theoretical Derivation and Numerical Analysis. Part. Sci. Technol. 2019, 38, 247–260. Taylor & Francis Group, LLC. DOI: 10.1080/02726351.2019.1666948.
  • Liu, Z.; Fu, J.; Yang, M.; Zhao, J.; Song, Y. New Model for Particle Removal from Surface in Presence of Deformed Liquid Bridge. J Colloid Interface Sci 2020, 562, 268–272. DOI: 10.1016/j.jcis.2019.11.117.
  • Han, Q.; Qu, J.; Zhang, K.; Zu, R.; Niu, Q.; Liao, K. Wind Tunnel Investigation of the Influence of Surface Moisture Content on the Entrainment and Erosion of Beach Sand by Wind Using Sands from Tropical Humid Coastal Southern China. Geomorphology 2019, 104, 230–237. DOI: 10.1016/j.geomorph.2008.08.016.
  • Kowalski, S. J.; Musielak, G.; Banaszak, J. Experimental Validation of the Heat and Mass Transfer Model for Convective Drying. Drying Technol. 2007, 25, 107–121. DOI: 10.1080/07373930601160940.
  • Pinto, T. C. S.; Souza, A. S.; Batista, J. N. M.; Sarkis, A. M.; Filho, L. S. L.; Padua, T. F.; Béttega, R. Characterization and Drying Kinetics of Iron Ore Pellet Feed and Sinter Feed. Drying Technol. 2020, 39, 1359–1370. DOI: 10.1080/07373937.2020.1747073.
  • Borba, M. V. S., 2017. Evaluation of the Use of Different Types of Dust Polymers to Control Atmospheric Emissions During the Transport of Iron Ore at EFVM - Vitória a Minas Railroad. Dissertation (Master Degree), Vale Institute of Technology – ITV, Belém-PA, Brazil,
  • Santos Junior, R. M. Federal University of Pará, Amazon Development Center in Engineering, Post-graduate in Infrastructure Engineering and Energy Development, Tucuruí-PA, Brazil, 2018. Experimental Procedures for Assessing Dust Emission in Ore Handling. Dissertation (Master Degree)
  • Mohan, V. P. C.; Talukdar, P. Design of an Experimental Set up for Convective Drying:experimental Studies at Different Drying Temperature. Heat Mass Transfer 2013, 49, 31–40. DOI: 10.1007/s00231-012-1060-4.
  • Athayde, M.; Fonseca, M. C.; Bagatini, M. C. Iron Ore Pellet Drying Assisted by Microwave: A Kinetic Evaluation. Miner. Process. Extr. Metall. Rev. 2018, 39, 266–275. DOI: 10.1080/08827508.2017.1423295.
  • Namkung, W.; Cho, M. Pneumatic Drying of Iron Ore Particles in a Vertical Tube. Drying Technol. 2004, 22, 877–891. DOI: 10.1081/DRT-120034268.
  • Banooni, S.; Hajidavalloo, E.; Dorfeshan, M. A Comprehensive Review on Modeling of Pneumatic and Flash Drying. Drying Technol. 2018, 36, 33–51. DOI: 10.1080/07373937.2017.1298123.
  • Ljung, A.-L.; Frishfelds, V.; Lundstrom, T. S.; Marjavaar, B. D. Discrete and Continuous Modeling of Heat and Mass Transport in Drying of a Bed of Iron Ore Pellets. Drying Technol. 2012, 30, 760–773. DOI: 10.1080/07373937.2012.662567.
  • Metzger, T.; Tsotsas, E. Influence of Pore Size Distribution on Drying Kinetics: A Simple Capillary Model. Drying Technol. 2005, 23, 1797–1809. DOI: 10.1080/07373930500209830.
  • ElGamal, R.; Ronsse, F.; Radwan, S. M.; Pieters, J. G. Coupling CFD and Diffusion Models for Analyzing the Convective Drying Behavior of a Single Rice Kernel. Drying Technol. 2014, 32, 311–320. DOI: 10.1080/07373937.2013.829088.
  • Bala, B. K. Drying and Storage of Cereal Grains. John Wiley & Sons, Ltd, 2nd Ed.; Jessore, Bangladesh, 2017.
  • Ramachandran, R. P.; Akbarzadeh, M.; Paliwal, J.; Cenkowski, S. Computational Fluid Dynamics in Drying Process Modelling - a Technical Review. Food Bioprocess Technol. 2017, 292, 271. DOI: 10.1007/s11947-017-2040-y.
  • Ljung, A.-L.; Lundström, Marjavaara, B. D.; Tano, K. Convective Drying of an Individual Ore Pellet – Analysis with CFD. Int. J. Heat Mass Transf. 2011, 54, 3882–3890. DOI: 10.1016/j.ijheatmasstransfer.2011.04.040.
  • Burström, P. E. C.; Frishfelds, V.; Ljung, A.-L.; Lundström, T. S. Modelling Heat Transfer during Flow through a Random Packed Bed of Spheres. Heat Mass Transfer 2018, 54, 1225–1245. DOI: 10.1007/s00231-017-2192-3.
  • Feng, J.; Zhang, Y.; Zheng, H.; Xie, X.; Zhang, C. Drying and Preheating Processes of Iron Ore Pellets in a Traveling Grate. International Journal of Minerals, Metallurgy and Materials 2010, Volume17, Page535. Number DOI: 10.1007/s12613-010-0354-0.
  • Selimefendigil, F.; Coban, S. O.; Oztop, H. F. Numerical Analysis of Heat and Mass Transfer of a Moving Porous Moist Object in a Ttwo Dimensional Channel. Int. Commun. Heat Mass Transfer 2021, 121, 0735–1933. DOI: 10.1016/j.icheatmasstransfer.2020.105093.
  • Gao, B.; Davarzani, H.; Helmig, R.; Smits, K. M. Experimental and Numerical Study of Evaporation From Wavy Surface by Coupling Free and Porous Media Flow. Water Resour. Res. 2018, 54, 9096–9117. DOI: 10.1029/2018WR023423.
  • Afshar, S.; Metzger, L.; Patel, H.; Selomulya, C.; Woo, M. W. A Practical CFD Modeling Approach to Estimate Outlet Boundary Conditions of Industrial Multistage Spray Dryers: Inert Particle Flow Field. Drying Technol. 2019, 37, 824–838. DOI: 10.1080/07373937.2018.1464473.
  • Ali, M.; Mahmud, T.; Heggs, P. J.; Ghadiri, M.; Bayly, A.; Ahmadian, H.; Juan, M. CFD Modeling of a Pilot-Scale Countercurrent Spray Drying Tower for the Manufacture of Detergent Powder. Drying Technol. 2017, 35, 281–299. DOI: 10.1080/07373937.2016.1163576.
  • Zhu, Y.; Wang, P.; Sun, D.; Qu, Z.; Yu, B. Multiphase Porous Media Model with Thermo-Hydro and Mechanical Bidirectional Coupling for Food Convective Drying. Int. J. Heat Mass Transf. 2021, 175, 0017–9310. DOI: 10.1016/j.ijheatmasstransfer.2021.121356.
  • Taylor, R.; Krishna, R. Multicomponent Mass Transfer. Wiley, New York. 1993.
  • Cruz, D. A. Study of Water-Oil Relative Permeability Curves Considering the Effect of Capillary Forces on Additional Oil Production,. Ph.D. Dissertation, Federal University of Rio de Janeiro, Rio de JaneiroBrazil, December 2015.
  • Alazaiza, M. Y. D.; Copty, N. K.; Ngien, S. K.; Bob, M. M.; Aburas, M. M. Characterization of Capillary Pressure–Saturation Relationships for Double-Porosity Medium Using Light Transmission Visualization Technique. Transp. Porous Media 2019, 130, 513–528. DOI: 10.1007/s11242-019-01322-x.
  • Wang, J.; Zhang, L.; Ge, K.; Dong, H. Capillary Pressure in the Anisotropy of Sediments with Hydrate Formation. Fuel 2021, 289, 0016–2361. DOI: 10.1016/j.fuel.2020.119938.
  • Carsel, R.; Parrish, R. Developing Joint Probability Distributions of Soil Water Retention Characteristics. Water Resour. Res. 1988, 24, 755–769. DOI: 10.1029/WR024i005p00755.
  • Incropera, F. P.; Dewitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer. Gen/LTC, 8th Ed.; Rio de Janeiro, Brazil, 2019.
  • Lee, W. H. A Pressure Iteration Scheme For Two-Phase Modeling. Technical Report LA-UR 79-975. Los Alamos Scientific Laboratory, Los Alamos, New México, 1979.
  • Hughmark, G. A. Mass and Heat Transfer From Rigid Spheres. AlChE. J. 1967, 13, 1219–1221. DOI: 10.1002/aic.690130638.
  • Moran, M. J.; Shapiro, H. N.; Broettner, D. D.; Bailey, B. B. Principles of Thermodynamics for Engineering. Gen/LTC, 8th Ed.; Rio de Janeiro, Brazil, 2019.
  • Santos, G. A. Ouro Preto-MG, Brazil, 2020. Development of a capacitive sensor for monitoring iron ore moisture in a small-scale prototype train wagon. Dissertation (Master Degree) - Federal University of Ouro Preto. Post-graduate in Instrumentation, Control and Automation of Mining Processes, Vale Institute of Technology (ITV)
  • Abernethy, R. B.; Benedict, R. P.; Dowdell, R. B. ASME Measurement Uncertainty. Trans. ASME, J. Fluids Eng. 1985, 107, 161–163. DOI: 10.1115/1.3242450.
  • Page, G. E. Factors Influencing the Maximum Rates of Air Drying Shelled Corn in Thin Layers. Department of Mechanical Engineering, Purdue University, West Lafayette, 1949. Ph.D.Thesis
  • Brazilian Association of Technical Standars 2003 – ABNT. Aggregates – Determination of Granulometric. Brazilian Cement, Concret and Aggregates Committee (ABNT/CB-18). NBR NM 248 – Aggregates – Sieve analysis of fine and coarse aggregates. July 2003. http://professor.pucgoias.edu.br/sitedocente/admin/arquivosupload/17827/material/nbr_nm248_2003.pdf. (accessed January 05, 2022).
  • Brazilian Association of Technical Standards – ABNT NBR 7181, Brazilian Standard. Soil — Grain Size Analysis. 2016, Second edition.
  • Leal Filho, L. S.; Ishi, H. A.; Azevedo, R. C. Technical Subsidies for Dust Reduction in Iron Ore. transport by EFVM. University of São Paulo (USP). 2011.
  • Lira, I.; Cordero, R. R.; Francois, M.; Edwards, C. V. The Uncertainty of Experimental Derivatives: application to Strain Measurement. Meas. Sci. Technol. 2004, 15, 2381–2388. DOI: 10.1088/0957-0233/15/12/005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.