5,534
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Advances in wood drying research and development

, , & ORCID Icon
Pages 890-914 | Received 20 Dec 2022, Accepted 16 Apr 2023, Published online: 09 May 2023

References

  • Pang, S. Investigation of Effects of Wood Variability and Rheological Properties on Lumber Drying: Application of Mathematical Models. Chem. Eng. J. 2002, 86, 103–110. DOI: 10.1016/S1385-8947(01)00278-9.
  • Moya, R.; Tovar, D. A.; Tenorio, C.; Bond, B. Moisture Content Variation in Kiln-Dried Lumber from Plantations of Vochysia Guatemalensis. Wood Fiber Sci. 2011, 43, 121–129.
  • Pang, S. Moisture Content Gradient in a Softwood Board during Drying: Simulation from a 2-D Model and Measurement. Wood Sci. Technol. 1996, 30, 165–178. DOI: 10.1007/BF00231631.
  • Sandberg, D. Distortion and Visible Crack Formation in Green and Seasoned Timber: Influence of Annual Ring Orientation in the Cross Section. Holz Roh Werkst. 2005, 63, 11–18. DOI: 10.1007/s00107-004-0546-2.
  • Yin, Q.; Liu, H.-H. Drying Stress and Strain of Wood: A Review. Appl. Sci. 2021, 11, 5023. DOI: 10.3390/app11115023.
  • Pang, S. Modelling of Stress Development during Drying and Relief during Steaming in Pinus Radiata Lumber. Drying Technol. 2000, 18, 1677–1696. DOI: 10.1080/07373930008917806.
  • McMillen, J. M. Stresses in Wood during Drying. Report 1652. Department of Agriculture, Forest Service, Forest Products Laboratory, Madison, 1958.
  • Perré, P.; Passard, J. Stress Development. In Fundamental of Wood Drying: Perré, P. Ed.; European COST E15; A.R.BO.LOR: Nancy, France, 2007; pp 243–271.
  • Haslett, A. N. Suitability of Oil Palm Trunk for Timber Uses. J. Trop. For. Sci. 1990, 2, 243–251.
  • Vetter, R. E.; Sá Ribeiro, R. A.; Sá Ribeiro, M. G.; Ires, P. A. Miranda Studies on Drying of Imperial Bamboo. Eur. J. Wood Prod. 2015, 73, 411–414. DOI: 10.1007/s00107-015-0900-6.
  • Yuniarti, K.; Ozarska, B.; Brodie, G.; Harris, G.; Waugh, G. Collapse Development of Eucalyptus Saligna under Different Drying Temperature. J. Trop. For. Sci. 2015, 27, 462–471.
  • Meyer, R. W.; Barton, G. M. A. Relationship between Collapse and Extractives in Western Red Cedar. For. Prod. J. 1971, 21, 58–60.
  • Simpson, W. T. Drying Wood: A Review – Part I. Drying Technol. 1983a, 2, 235–264. DOI: 10.1080/07373938308959827.
  • Simpson, W. T. Drying Wood: A Review – Part II. Drying Technol. 1983b, 2, 353–368. DOI: 10.1080/07373938308959836.
  • Chen, C.; Kuang, Y.; Zhu, S.; Burgert, I.; Keplinger, T.; Gong, A.; Li, T.; Berglund, L.; Eichhorn, S. J.; Hu, L. Structure–Property–Function Relationships of Natural and Engineered Wood. Nat. Rev. Mater. 2020, 5, 642–666. DOI: 10.1038/s41578-020-0195-z.
  • Penvern, H.; Zhou, M.; Maillet, B.; Courtier-Murias, D.; Scheel, M.; Perrin, J.; Weitkamp, T.; Bardet, S.; Caré, S.; Coussot, P. How Bound Water Regulates Wood Drying. Phys. Rev. Appl. 2020, 14, 054051. DOI: 10.1103/PhysRevApplied.14.054051.
  • Cocusse, M.; Rosales, M.; Maillet, B.; Sidi-Boulenouar, R.; Julien, E.; Caré, S.; Coussot, P. Two-Step Diffusion in Cellular Hygroscopic (Vascular Plant-like) Materials. Sci. Adv. 2022, 8, eabm7830. Published online DOI: 10.1126/sciadv.abm7830.
  • Pang, S.; Langrish, T. A. G.; Keey, R. B. Moisture Movement in Softwood Timber at Elevated-Temperatures. Drying Technol. 1994, 12, 1897–1914.
  • Rémond, R.; Perré, P.; Mougel, E. Using the Concept of Thin Dry Layer to Explain the Evolution of Thickness, Temperature, and Moisture Content during Convective Drying of Norway Spruce Boards. Drying Technol. 2005, 23, 249–271. DOI: 10.1081/DRT-200047918.
  • Pang, S. Mathematical Modelling of Kiln Drying of Softwood Timber: Model Development, Validation, and Practical Application. Drying Technol. 2007, 25, 421–431. DOI: 10.1080/07373930601183751.
  • McCurdy, M. C.; Pang, S.; Keey, R. B. Surface Colour Change in Wood during Drying above and below Fibre Saturation Point. Maderas, Cienc. Tecnol. 2006, 8, 31–40. DOI: 10.4067/S0718-221X2006000100004.
  • Walker, J. C. F. 2006. Water in Wood. In Primary Wood Processing: Principles and Practice; Walker, J. C. F., Ed.; Springer: Dordrecht, The Netherlands; pp 69–94.
  • Siau, J. F. 1984. Transport Processes in Wood; Springer-Verlag: Syracuse, NY.
  • Pang, S.; Langrish, T. A. G.; Keey, R. B. The Heat of Sorption of Timber. Drying Technol. 1993, 11, 1071–1080. DOI: 10.1080/07373939308916883.
  • Pang, S.; Herritsch, A. Physical Properties of Earlywood and Latewood of Pinus Radiata D. Don: Anisotropic Shrinkage, Equilibrium Moisture Content and Fibre Saturation Point. Walter de Gruyter 2005, 59, 654–661. DOI: 10.1515/HF.2005.105.
  • Gerhards, C. C. Effect of Moisture Content and Temperature on the Mechanical Properties of Wood: An Analysis of Immediate Effects. Wood Fiber 1982, 14, 4–36.
  • Báder, M.; Németh, R. Moisture-Dependent Mechanical Properties of Longitudinally Compressed Wood. Eur. J. Wood Prod. 2019, 77, 1009–1019. DOI: 10.1007/s00107-019-01448-1.
  • Pang, S. Relationship between a Diffusion Model and a Transport Model for Softwood Drying. Wood Fiber Sci. 1997, 29, 58–67.
  • Stanish, M. A.; Schajer, G. S.; Kayihan, F. A Mathematical Model of Drying for Hygroscopic Porous Media. AIChE J. 1986, 32, 1301–1311. DOI: 10.1002/aic.690320808.
  • Perré, P.; Turner, I. Determination of the Material Property Variations across the Growth Ring of Softwood for Use in a Heterogeneous Drying Model. Part 1. Capillary Pressure, Tracheid Model and Absolute Permeability. Holzforschung 2001, 55, 318–323. DOI: 10.1515/HF.2001.052.
  • Salin, J.-G.; Wamming, T. Drying of Timber in Progressive Kilns: Simulation, Quality, Energy Consumption and Drying Cost Considerations. Wood Mater. Sci. Eng. 2008, 3, 12–20. DOI: 10.1080/17480270802561003.
  • Dumyang, K.; Settapong, P.; Rittiphet, C.; Khongthong, S.; Matan, N. Initiation and Termination of Liquid Flow Controlled Drying Collapse of Interconnected Parenchyma Cells in Palm Wood. Drying Technol. 2023 (published online 24 Jan. 2023). DOI: 10.1080/07373937.2023.2166949.
  • Vincent, O.; Sessoms, D. A.; Huber, E. J.; Guioth, J.; Stroock, A. D. Drying by Cavitation and Poroelastic Relaxations in Porous Media with Macroscopic Pores Connected by Nanoscale Throats. Phys. Rev. Lett. 2014, 113, 134501. DOI: 10.1103/PhysRevLett.113.134501.
  • US Forest Products Laboratory, Wood Shrinkage Table. http://woodbin.com/ref/wood-shrinkage-table/ (accessed November 24, 2022).
  • Lazarescu, C.; Avramidis, S.; Oliveira, L. Modeling Shrinkage Response to Tensile Stresses in Wood Drying: I. Shrinkage-Mmoisture Interaction in Stress-Free Specimens. Drying Technol. 2009, 27, 1183–1191. DOI: 10.1080/07373930903263111.
  • Tomad, J.; Leelatanon, S.; Jantawee, S.; Srisuchart, K.; Matan, N. Internal Stress Development within Wood during Drying: Regime and Kinetics. Drying Technol. 2023, 41, 77–88. DOI: 10.1080/07373937.2022.2084750.
  • Xiang, Z.; Peralta, P.; Peszlen, I. Lumber Drying Stresses and Mitigation of Cross-Sectional Deformation. Wood Fiber Sci. 2012, 44, 94–102.
  • Pang, S.; Simpson, I.; Haslett, T. Cooling and Steam Conditioning after High-Temperature Drying of Pinus Radiata Board: Experimental Investigation and Mathematical Modelling. Wood Sci. Technol. 2001, 35, 487–502. DOI: 10.1007/s00226-001-0124-2.
  • Ormarsson, S.; Dahlblom, O.; Petersson, H. A Numerical Study of the Shape Stability of Sawn Timber Subjected to Moisture Part 2: Simulation of Drying Board. Wood Sci. Technol. 1999, 33, 407–423. DOI: 10.1007/s002260050126.
  • Moutee, M.; Fortin, Y.; Fafard, M. A. Global Rheological Model of Wood Cantilever as Applied to Wood Drying. Wood Sci. Technol. 2007, 41, 209–234. DOI: 10.1007/s00226-006-0106-5.
  • Salinas, C.; Chavez, C.; Ananias, R. A.; Elustondo, D. Unidimensional Simulation of Drying Stress in Radiata Pine Wood. Drying Technol. 2015, 33, 996–1005. DOI: 10.1080/07373937.2015.1012767.
  • Ranta-Maunus, A. The Viscoelasticity of Wood at Varying Moisture Content. Wood Sci. Technol. 1975, 9, 189–205. DOI: 10.1007/BF00364637.
  • Salin, J. G. Numerical Prediction of Checking during Timber Drying and a New Mechano-Sorptive Creep Model. Holz Als Roh-Und Werkstoff 1992, 50, 195–200. DOI: 10.1007/BF02663286.
  • Mårtensson, A. Mechano-Sorptive Effects in Wooden Material. Wood Sci. Technol. 1994, 28, 437–449.
  • Navi, P.; Stanzl-Tschegg, S. Micromechanics of Creep and Relaxation of Wood. A Review. Holzforschung 2009, 63, 186–195. DOI: 10.1515/HF.2009.013.
  • Armstrong, L. D.; Kingston, R. S. T. Effect of Moisture Changes on Creep in Wood. Nature 1960, 185, 862–863. DOI: 10.1038/185862c0.
  • Armstrong, L. D.; Christensen, G. N. Influence of Moisture Changes on Deformation of Wood under Stress. Nature 1961, 191, 869–870. DOI: 10.1038/191869a0.
  • Olsson, A.-M.; Salmén, L.; Eder, M.; Burgert, I. Mechano-Sorptive Creep in Wood Fibres. Wood Sci. Technol. 2007, 41, 59–67. DOI: 10.1007/s00226-006-0086-5.
  • Mackay, B. H.; Downes, J. G. The Effect of the Sorption Process on the Dynamic Rigidity Modulus of the Wool Fiber. J. Appl. Polym. Sci. 1959, 2, 32–38. DOI: 10.1002/app.1959.070020405.
  • Byrd, V. L. Effect of Relative Humidity Changes during Creep on Handsheet Paper Properties. Tappi 1972, 55, 247–252.
  • Wang, J. Z.; Dillard, D. A.; Wolcott, M. P.; Kamke, F. A.; Wilkes, G. L. Transient Moisture Effect in Fibers and Composite Materials. J. Compos. Mater. 1990, 24, 994–1009. DOI: 10.1177/002199839002400906.
  • Pickett, G. The Effect of Change in Moisture-Content of the Creep of Concrete under a Sustained Load. J. Am. Concr. Inst. 1942, 13, 333–355.
  • Peng, H.; Salmén, L.; Jiang, J.; Lu, J. Creep Properties of Compression Wood Fibers. Wood Sci. Technol. 2020, 54, 1497–1510. DOI: 10.1007/s00226-020-01221-1.
  • Bethe, E. Strength Properties of Construction Wood Stored under Changing Climates and Mechanical Load. Holz Als Roh-Und Werkstoff 1969, 27, 291–303. DOI: 10.1007/BF02612703.
  • Armstrong, L. D. Deformation of Wood in Compression during Moisture Movement. Wood Sci. 1972, 5, 81–86.
  • Yang, L.; Liu, H. A Review of Eucalyptus Wood Collapse and Its Control during Drying. BioResources 2018, 13, 2171–2181. DOI: 10.15376/biores.13.1.Yang.
  • Tiemann, H. D. 1913. Eucalyptus Lumber. Forest Products Laboratory, Deparatment of Agriculture: Madison, WI; p 20
  • Hawley, L. F. 1931. Wood-Liquid Relations; US Department of Agriculture: Madison, WI.
  • Zimmermann, M. H.; Tyree, M. T. 1983. Xylem Structure and the Ascent of Sap; Springer: Syracuse, NY.
  • Skaar, C. 1988. Wood-Water Relations; Springer-Verlag: Syracuse, NY.
  • Elustondo, D. Semi-Empirical Linear Correlation between Surface Tension and Thermodynamics Properties of Liquids and Vapours. Chem. Phys. 2021, 545, 111145. DOI: 10.1016/j.chemphys.2021.111145.
  • Deng, Y.; Abazeri, M. Contact Angle Measurement of Wood Fibers in Surfactant and Polymer Solutions. Wood Fiber Sci. 1998, 30, 155–164.
  • Kestin, J.; Sengers, J. V.; Kamgar‐Parsi, B.; Sengers, J. M. H. L. Thermophysical Properties of Fluid H2O. J. Phys. Chem. Ref. Data 1984, 13, 175–183. DOI: 10.1063/1.555707.
  • Wiedenhoeft, A. 2010. Structure and Function of Wood. In Wood Handbook: Wood as an Engineering Material; Centennial, Ed.; General Technical Report FPL; GTR-190; US Department of Agriculture, Forest Service, Forest Products Laboratory: Madison, WI, 2010; Vol. 190; p 3.1–3.18. Chapter 3.
  • Jinxing, L. Distribution, Size and Effective Aperture Area of the Inter-Tracheid Pits in the Radial Wall of Pinus Radiata Tracheids. Iawa J. 1989, 10, 53–58. DOI: 10.1163/22941932-90001111.
  • Stamm, A. J. Maximum Effective Pit Pore Radii of the Heartwood and Sapwood of Six Softwoods as Affected by Drying and Resoaking. Wood Fiber Sci. 1970, 1, 263–269.
  • Green, D. W. 1999. Mechanical Properties of Wood. In Green, D. W., Winandy, J. E., Kretschmann, D. E., Eds.; Wood Handbook; US Department of Agrieculture, Forest Service, Products Laboratory: Madison, WI; 4–1
  • Magendans, J. 1999. Morphology of Pits in Hardwood Fibres; Wageningen Agricultural University: Wageningen, The Netherlands.
  • Magendans, J.; van Veenendaal, W. Bordered Pits and Funnel Pits: Further Evidence of Convergent Evolution. Wageningen Agric. Univ. Pap. 1999, 99, 31–97.
  • Ek, M.; Gellerstedt, G.; Henriksson, G. 2009. Wood Chemistry and Biotechnology; Walter de Gruyter: Berlin, Germany.
  • Dickson, A. Mosaic, Block-Face Microscopy for Measuring Cell Dimensions, Cell Collapse, and Spatial Relationships in Wood. Iawa J. 2021, 43, 197–212. DOI: 10.1163/22941932-bja10072.
  • Perré, P.; Turner, I. W. A 3-D Version of TransPore: A Comprehensive Heat and Mass Transfer Computational Model for Simulating the Drying of Porous Media. Int. J. Heat Mass Transf. 1999, 42, 4501–4521. DOI: 10.1016/S0017-9310(99)00098-8.
  • Perré, P.; Keey, R. B. Drying of Wood: Principles and Practices. In Handbook of Industrial Drying; Mujumdar, A, Ed.; CRC Press: Boca Raton, FL; 2014; pp 822–872.
  • Salin, J.-G. Modelling of the Behaviour of Free Water in Sapwood during Drying: Part I. A New Percolation Approach. Wood Mater. Sci. Eng. 2006, 1, 4–11. DOI: 10.1080/17480270600630927.
  • Salin, J.-G. Fibre Level Modelling of Free Water Behaviour during Wood Drying and Wetting. Maderas, Cienc. Tecnol. 2011, 13, 153–162. DOI: 10.4067/S0718-221X2011000200003.
  • Omoregie, Z. S. Factors Affecting the Equivalency of Different Capillary Pressure Measurement Techniques. SPE Form. Eval. 1988, 3, 147–155. DOI: 10.2118/15384-PA.
  • Lewis, G. N.; Randall, M. 1961. Thermodynamics: By Gilbert Newton Lewis and Merle Randall. Rev. by Kenneth S. Pitzer and Leo Brewer, McGraw-Hill: New York, USA.
  • Simpson, W. T. Predicting Equilibrium Moisture Content of Wood by Mathematical Models. Wood Fiber Sci. 1973, 5, 41–49.
  • Cloutier, A.; Fortin, Y. A Model of Moisture Movement in Wood Based on Water Potential and the Determination of the Effective Water Conductivity. Wood Sci. Technol. 1993, 27, 95–114. DOI: 10.1007/BF00206228.
  • Cloutier, A.; Fortin, Y. Wood Drying Modelling Based on the Water Potential Concept: Hysteresis Effects. Drying Technol. 1994, 12, 1793–1814. DOI: 10.1080/07373939408962207.
  • Riley, S.; Harrington, J.; Elustondo, D. A Theoretical Analysis of the Potential Effect of Negative Pressure in Wood Drying Based on a CT-Scanner Study. Drying Technol. 2022, 40, 2975–2989. DOI: 10.1080/07373937.2021.1986062.
  • Flibotte, S.; Menon, R. S.; MacKay, A. L.; Hailey, J. R. T. Proton Magnetic Resonance of Western Red Cedar. Wood Fiber Sci. 1990, 22, 362–376.
  • Dawson, B. S. W.; Pearson, H.; Kimberley, M. O.; Davy, B.; Dickson, A. R. Effect of Supercritical CO2 Treatment and Kiln Drying on Collapse in Eucalyptus Nitens Wood. Eur. J. Wood Prod. 2020, 78, 209–217. DOI: 10.1007/s00107-020-01500-5.
  • Yang, L.; Liu, H. Effect of Supercritical CO2 Drying on Moisture Transfer and Wood Property of Eucalyptus Urophydis. Forests 2020, 11, 1115. DOI: 10.3390/f11101115.
  • Pearson, H.; Donaldson, L.; Kimberley, M. Mitigation of Cellular Collapse during Drying of Eucalyptus Nitens Wood Using Supercritical CO2 Dewatering. Iawa J. 2022, 44, 1–20. DOI: 10.1163/22941932-bja10101.
  • Blakemore, P.; Northway, R. 2009. Review of, and Recommendations for, Research into Preventing or Ameliorating Drying Related Internal and Surface Checking in Commercially Important Hardwood Species in South-Eastern Australia. Final report received by FWPA in November, 2009.
  • Kauman, W. Cell Collapse in Wood. CSIRO Div. For. Prod. Reprint No. 566. CSIRO Transl. Holz Als Roh-Und Werkstoff 1964, 22, 183–196. DOI: 10.1007/BF02613024.
  • Karl, L. W.; Dedrick, E. L. 1950. Method Involving the Use of Chemicals for Increasing the Drying Rate of Wood, Google Patents.
  • Shaozhi, Z.; Yu, P.; Dongpo, L.; Youming, Z.; Guangming, C.; Heng, L. A Thermophysical Study on the Freeze Drying of Wooden Archaeological Artifacts. J. Cult. Heritage 2016, 17, 95–101. DOI: 10.1016/j.culher.2015.07.003.
  • Jones, S. P.; Slater, N. K.; Jones, M.; Ward, K.; Smith, A. D. Investigating the Processes Necessary for Satisfactory Freeze-Drying of Waterlogged Archaeological Wood. J. Archaeol. Sci. 2009, 36, 2177–2183. DOI: 10.1016/j.jas.2009.05.028.
  • Grattan, D. W.; McCawley, J. C. The Potential of the Canadian Winter Climate for the Freeze-Drying of Degraded Waterlogged Wood. Stud. Conserv. 1978, 23, 157–167. DOI: 10.2307/1505844.
  • Grattan, D. W.; McCawley, J. C.; Cook, C. The Potential of the Canadian Winter Climate for the Freeze-Drying of Degraded Waterlogged Wood: Part II. Stud. Conserv. 1980, 25, 118–136. DOI: 10.2307/1505808.
  • Elustondo, D.; Ahmed, S.; Oliveira, L. Drying Western Red Cedar with Superheated Steam. Drying Technol. 2014, 32, 550–556. DOI: 10.1080/07373937.2013.843190.
  • Elustondo, D.; Oliveira, L.; Avramidis, S. Evaluation of Three Semi-Empirical Models for Superheated Steam Vacuum Drying of Timbers. Drying Technol. 2003, 21, 875–893. DOI: 10.1081/DRT-120021690.
  • Bovornset, S.; Wongwises, S. Drying Parawood with Superheated Steam. Am. J. Appl. Sci. 2007, 4, 215–219. DOI: 10.3844/ajassp.2007.215.219.
  • Gard, W. F.; Riepen, M. Super Heated Steam Drying of European Hardwoods. In ISCHP 07 2007; p 143.
  • Espinoza, O.; Bond, B. Vacuum Drying of Wood—State of the Art. Curr. For. Rep. 2016, 2, 223–235. DOI: 10.1007/s40725-016-0045-9.
  • Ananías, R. A.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Torres-Mella, J.; Salvo-Sepúlveda, L.; Castillo-Ulloa, D.; Salinas-Lira, C. Radio Frequency Vacuum Drying of Eucalyptus Nitens Juvenile Wood. BioRes 2020, 15, 4886–4897. DOI: 10.15376/biores.15.3.4886-4897.
  • Câmpean, M.; Lazarescu, C. Considerations upon the Drying of Oak Lumber. Bull. Transilvania Univ. Brasov. For. Wood Ind. Agric. Food Eng. Ser. II 2016, 9, 37.
  • Antoniow, J. S.; Maigret, J.-E.; Jensen, C.; Trannoy, N.; Chirtoc, M.; Beaugrand, J. Glass-Transition Temperature Profile Measured in a Wood Cell Wall Using Scanning Thermal Expansion Microscope (SThEM). Int. J. Thermophys. 2012, 33, 2167–2172. DOI: 10.1007/s10765-012-1313-y.
  • Toba, K.; Nakai, T.; Kanbayashi, T.; Saito, H. Effects of Cyclic Drying and Moistening on the Mechanical and Physical Properties of Wood. Eur. J. Wood Prod. 2022, 80, 1333–1341. DOI: 10.1007/s00107-022-01847-x.
  • Wu, Y. Q.; Hayashi, K.; Cai, Y. C. Study on Collapse-Shrinkage Characteristics in Plantation-Grown Eucalyptus Wood under Continuous and Intermittent Drying Regimes. In Defect and Diffusion Forum; 2010; Vol. 297–301; pp 1022–1026. DOI: 10.4028/www.scientific.net/DDF.297-301.1022.
  • Yang, L.; Liu, H.; Cai, Y.; Hayashi, K.; Wu, Z. Effect of Drying Conditions on the Collapse-Prone Wood of Eucalyptus Urophylla. BioResources 2014, 9, 7288–7298. DOI: 10.15376/biores.9.4.7288-7298.
  • Yuniarti, K.; Ozarska, B.; Brodie, G.; Harris, G.; Waugh, G. The Drying Performance and Post-Drying Qualities of Eucalyptus Saligna Exposed to Intermittent and Continuous Drying. Indones. J. For. Res. 2020, 7, 43–57. DOI: 10.20886/ijfr.2020.7.1.43-57.
  • Korkut, S.; Unsal, O.; Kocaefe, D.; Aytin, A.; Gokyar, A. Evaluation of Kiln-Drying Schedules for Wild Cherry Wood (Cerasus Avium). Maderas, Cienc. Tecnol. 2013, 15, 0–0. DOI: 10.4067/S0718-221X2013005000022.
  • Rahimi, S.; Faezipour, M.; Tarmian, A. Drying of Internal-Check Prone Poplar Lumber Using Three Different Conventional Kiln Drying Schedules. J. Indian Acad. Wood Sci. 2011, 8, 6–10. DOI: 10.1007/s13196-011-0016-5.
  • Cronin, K.; Baucour, P.; Abodayeh, K.; Da Silva, A. B. Probabilistic Analysis of Timber Drying Schedules. Drying Technol. 2003, 21, 1433–1456. DOI: 10.1081/DRT-120024487.
  • Langrish, T. A. G.; Brooke, A. S.; Davis, C. L.; Musch, H. E.; Barton, G. W. An Improved Drying Schedule for Australian Ironbark Timber: Optimisation and Experimental Validation. Drying Technol. 1997, 15, 47–70. DOI: 10.1080/07373939708917218.
  • Musch, H. E.; Barton, G. W.; Langrish, T. A. G.; Brooke, A. S. Non-Linear Model Predictive Control of Timber Drying. Comput. Chem. Eng. 1998, 22, 415–425. DOI: 10.1016/S0098-1354(97)00235-4.
  • Pordage, L. J.; Langrish, T. A. G. Optimisation of Hardwood Drying Schedules Allowing for Biological Variability. Drying Technol. 2000, 18, 1797–1815. DOI: 10.1080/07373930008917811.
  • Rohrbach, K.; Oliveira, L.; Avramidis, S. Drying Schedule Structure and Subsequent Post-Drying Equalisation Effect on Hemlock Timber Quality. Int. Wood Prod. J. 2014, 5, 55–64. DOI: 10.1179/2042645313Y.0000000052.
  • Tran, N.; Rozsa, A. N. 2000. Development of a Novel Radio Frequency Heating System for Drying Wood. In Proceedings of the 6th International IUFRO Wood Drying Conference; Vermaas, H., Steinmann, D., Eds, University of Stellenbosch, Stellenbosch, South Africa, Jan. 25–28, 1999; pp 42–44.
  • Leiker, M.; Adamska, M. A. Energy Efficiency and Drying Rates during Vacuum Drying of Wood. Holz Als Roh- Und Werkstoff 2004, 62, 203–208. DOI: 10.1007/s00107-004-0479-9.
  • Avramidis, S.; Liu, F. Drying Characteristics of Thick Lumber in a Laboratory Radiofrequency Vacuum Dryer. Drying Technol. 1994, 12, 1963–1981. DOI: 10.1080/07373939408962215.
  • Fu, Z. Y.; Avramidis, S.; Weng, X.; Cai, Y. C.; Zhou, Y. D. Influence Mechanism of Radio Frequency Heating on Moisture Transfer and Drying Stress in Larch Boxed-Heart Square Timber. Drying Technol. 2019, 37, 1625–1632. DOI: 10.1080/07373937.2018.1526191.
  • Elustondo, D.; Avramidis, S. Simulated Comparative Analysis of Sorting Strategies for RFV Drying. Wood Fiber Sci. 2003, 35, 49–55.
  • Elustondo, D.; Avramidis, S.; Zwick, R. The Demonstration of Increased Lumber Value Using Optimized Lumber Sorting and Radio Frequency Vacuum Drying. For. Prod. J. 2005, 55, 76–83.
  • Chen, J. J.; Han, D.; Bai, G. P.; Zheng, M. R.; Si, Z. T.; Song, Y.; Gu, J. M. Thermodynamic Analysis of a Novel Wood Drying System Based on Self-Heat Recuperation Technology. Energy Sources Part A – Recovery Util. Environ. Effects 2022, 44, 2385–2401. DOI: 10.1080/15567036.2019.1649752.
  • Aziz, M.; Fushimi, C.; Kansha, Y.; Mochidzuki, K.; Kaneko, S.; Tsutsumi, A.; Matsumoto, K.; Hashimoto, T.; Kawamoto, N.; Oura, K.; et al. Innovative Energy-Efficient Biomass Drying Based on Self-Heat Recuperation Technology. Chem. Eng. Technol. 2011, 34, 1095–1103. DOI: 10.1002/ceat.201100065.
  • Elustondo, D. Guest Editorial: R&D Needs in Wood Drying Technology. Drying Technol. 2014, 32, 629–630. DOI: 10.1080/07373937.2014.895141.
  • Mujumdar, A. S. Superheated Steam Drying. In Handbook of Industrial Drying. Mujumdar, A. S., Ed.; CRC Press, Boca Raton, FL; 1995; Vol. 2; pp 1071–1086.
  • Yamsaengsung, R.; Sattho, T. Superheated Steam Vacuum Drying of Rubberwood. Drying Technol. 2008, 26, 798–805. DOI: 10.1080/07373930802046518.
  • Pang, S.; Pearson, H. Experimental Investigation and Practical Application of Superheated Steam Drying Technology for Softwood Timber. Drying Technol. 2004, 22, 2079–2094. DOI: 10.1081/DRT-200034252.
  • Pang, S. Some Considerations in Simulation of Superheated Steam Drying of Softwood Lumber. Drying Technol. 1997, 15, 651–670. DOI: 10.1080/07373939708917252.
  • Park, Y.; Chung, H.; Kim, H.; Yeo, H. Applicability of Continuous Process Using Saturated and Superheated Steam for Boxed Heart Square Timber Drying. J. Korean Wood Sci. Technol. 2020, 48, 121–135. DOI: 10.5658/WOOD.2020.48.2.121.
  • Gard, W.; Riepen, M. 2008. Super-Heated Steam Drying in Dutch Operations. In COST E53, Delft, The Netherlands; pp 293–302.
  • Jumah, R.; Mujumdar, A. Modeling Intermittent Drying Using Adaptive Neuro-Fuzzy Inference System. Drying Technol. 2005, 23, 1075–1092. DOI: 10.1081/DRT-200059138.
  • Farkas, I. Use of Artificial Intelligence for the Modelling of Drying Processes. Drying Technol. 2013, 31, 848–855. DOI: 10.1080/07373937.2013.769002.
  • Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A. S. Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. Drying Technol. 2015, 33, 1397–1462. DOI: 10.1080/07373937.2015.1036288.
  • Martynenko, A. Artificial Intelligence: Is It a Good Fit for Drying? Drying Technol. 2018, 36, 891–892. DOI: 10.1080/07373937.2017.1362153.
  • Kato, S.; Wada, N.; Shiogai, K.; Tamaki, T.; Kagawa, T.; Toyosaki, R.; Nobuhara, H. Automatic Classification of Crack Severity from Cross-Section Image of Timber Using Simple Convolutional Neural Network. Appl. Sci. 2022, 12, 8250. DOI: 10.3390/app12168250.
  • Rahimi, S.; Avramidis, S. Predicting Moisture Content in Kiln Dried Timbers Using Machine Learning. Eur. J. Wood Prod. 2022, 80, 681–692. DOI: 10.1007/s00107-022-01794-7.
  • Cao, J.; Zhu, L.; Hu, Q. 2010. Decentralized Neural Network Variable Structure Controller Design for Wood Drying Process. In 22nd Chinese Control and Decision Conference, May 26–28, Xuzhou, P.R. China; pp 506–511.