Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 13
177
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Improving the hot air drying of garlic slices by perforation synergistic alcohol pretreatment

, , , , , ORCID Icon, , , , & show all
Pages 2077-2087 | Received 01 Nov 2022, Accepted 19 May 2023, Published online: 02 Aug 2023

References

  • Feng, Y. B.; Xu, B. G.; Yagoub, A. E. A.; Ma, H. L.; Sun, Y. H.; Xu, X.; Yu, X. J.; Zhou, C. S. Role of Drying Techniques on Physical, Rehydration, Flavor, Bioactive Compounds and Antioxidant Characteristics of Garlic. Food Chem. 2021, 343, 128404. DOI: 10.1016/j.foodchem.2020.128404.
  • Hnin, K. K.; Zhang, M.; Mujumdar, A. S.; Zhu, Y. L. Emerging Food Drying Technologies with Energy-Saving Characteristics: A Review. Drying Technol. 2019, 37, 1465–1480. DOI: 10.1080/07373937.2018.1510417.
  • Nurhaslina, C. R.; Bacho, S. A.; Mustapa, A. N. Review on Drying Methods for Herbal Plants. Mater. Today: Proc. 2022, 63, S122–S139. DOI: 10.1016/j.matpr.2022.02.052.
  • Tao, Y.; Zhang, J. L.; Jiang, S. R.; Xu, Y. Q.; Show, P. L.; Han, Y. B.; Ye, X. S.; Ye, M. R. Contacting Ultrasound Enhanced Hot-Air Convective Drying of Garlic Slices: Mass Transfer Modeling and Quality Evaluation. J. Food Eng. 2018, 235, 79–88. DOI: 10.1016/j.jfoodeng.2018.04.028.
  • An, K.; Zhao, D.; Wang, Z.; Wu, J.; Xu, Y.; Xiao, G. Comparison of Different Drying Methods on Chinese Ginger (Zingiber officinale Roscoe): Changes in Volatiles, Chemical Profile, Antioxidant Properties, and Microstructure. Food Chem. 2016, 197, 1292–1300. DOI: 10.1016/j.foodchem.2015.11.033.
  • Menon, A.; Stojceska, V.; Tassou, S. A. A Systematic Review on the Recent Advances of the Energy Efficiency Improvements in Non-Conventional Food Drying Technologies. Trends Food Sci. Technol. 2020, 100, 67–76. DOI: 10.1016/j.tifs.2020.03.014.
  • Chen, J. L.; Zhang, M.; Xu, B. G.; Sun, J. C.; Mujumdar, A. S. Artificial Intelligence Assisted Technologies for Controlling the Drying of Fruits and Vegetables Using Physical Fields: A Review. Trends Food Sci. Technol. 2020, 105, 251–260. DOI: 10.1016/j.tifs.2020.08.015.
  • Mousakhani-Ganjeh, A. M.; Amiri, A.; Nasrollahzadeh, F.; Wiktor, A.; Nilghaz, A.; Pratap-Singh, A.; Khaneghah, A. M. Electro-Based Technologies in Food Drying – A Comprehensive Review. LWT – Food Sci. Technol. 2021, 145, 111315. DOI: 10.1016/j.lwt.2021.111315.
  • Santos, K. C.; Guedes, J. S.; Rojas, M. L.; Carvalho, G. R.; Augusto, P. E. D. Enhancing Carrot Convective Drying by Combining Ethanol and Ultrasound as Pre-Treatments: Effect on Product Structure, Quality, Energy Consumption, Drying and Rehydration Kinetics. Ultrason. Sonochem. 2021, 70, 105304. DOI: 10.1016/j.ultsonch.2020.105304.
  • Wu, B. G.; Guo, X. Y.; Guo, Y. T.; Ma, H. L.; Zhou, C. S. Enhancing Jackfruit Infrared Drying by Combining Ultrasound Treatments: Effect on Drying Characteristics, Quality Properties and Microstructure. Food Chem. 2021, 358, 129845. DOI: 10.1016/j.foodchem.2021.129845.
  • Wiktor, A.; Nowacka, M.; Dadan, M.; Rybak, K.; Lojkowski, W.; Chudoba, T.; Witrowa-Rajchert, D. The Effect of Pulsed Electric Field (PEF) on Drying Kinetics, Color and Microstructure of Carrot. Drying Technol. 2016, 34, 1286–1296. DOI: 10.1080/07373937.2015.1105813.
  • Feng, Y. B.; Tan, C. P.; Zhou, C. S.; Yagoub, A. E. A.; Xu, B. G.; Sun, Y. H.; Ma, H. L.; Xu, X.; Yu, X. J. Effect of Freeze-Thaw Cycles Pretreatment on the Vacuum Freeze-Drying Process and Physicochemical Properties of the Dried Garlic Slices. Food Chem. 2020, 324, 126883. DOI: 10.1016/j.foodchem.2020.126883.
  • Feng, Y. B.; Zhou, C. S.; Yagoub, A. E. A.; Sun, Y. H.; Owusu-Ansah, P.; Yu, X. J.; Wang, X. L.; Xu, X.; Zhang, J.; Ren, Z. F. Improvement of the Catalytic Infrared Drying Process and Quality Characteristics of the Dried Garlic Slices by Ultrasound-Assisted Alcohol Pretreatment. LWT – Food Sci. Technol. 2019, 116, 108577. DOI: 10.1016/j.lwt.2019.108577.
  • Zhang, Z. Y.; Wei, Q. Y.; Liu, C. J.; Li, D. J.; Liu, C. Q.; Jiang, N. Comparison of Four Pretreatments on the Drying Behavior and Quality of Taro (Colocasia esculenta L. Schott) Slices during Intermittent Microwave Vacuum-Assisted Drying. Drying Technol. 2017, 35, 1347–1357. DOI: 10.1080/07373937.2017.1323761.
  • Ando, Y.; Hagiwara, S.; Nabetani, H.; Sotome, I.; Okunishi, T.; Okadome, H.; Orikasa, T.; Tagawa, A. Effects of Prefreezing on the Drying Characteristics, Structural Formation and Mechanical Properties of Microwave-Vacuum Dried Apple. J. Food Eng. 2019, 244, 170–177. DOI: 10.1016/j.jfoodeng.2018.09.026.
  • Zhu, Y.; Pan, Z.; McHugh, T. H.; Barrett, D. M. Processing and Quality Characteristics of Apple Slices Processed under Simultaneous Infrared Dry-blanching and Dehydration with Intermittent Heating. J. Food Eng. 2010, 97, 8–16. DOI: 10.1016/j.jfoodeng.2009.07.021.
  • Song, C. F.; Cui, Z.; Jin, G. Y.; Mujumdar, A. S.; Yu, J. F. Effects of Four Different Drying Methods on the Quality Characteristics of Peeled Litchis (Litchi chinensis Sonn.). Drying Technol. 2015, 33, 583–590. DOI: 10.1080/07373937.2014.963203.
  • Han, J.; Lawson, L.; Han, G.; Han, P. A Spectrophotometric Method for Quantitative Determination of Allicin and Total Garlic Thiosulfinates. Anal. Biochem. 1995, 225, 157–160. DOI: 10.1006/abio.1995.1124.
  • Zhou, L.; Guo, X.; Bi, J.; Yi, J.; Chen, Q.; Wu, X.; Zhou, M. Drying of Garlic Slices (Allium sativum L.) and Its Effect on Thiosulfinates, Total Phenolic Compounds and Antioxidant Activity during Infrared Drying. J. Food Process. Preserv. 2017, 41, e12734. DOI: 10.1111/jfpp.12734.
  • Granella, S. J.; Bechlin, T. R.; Christ, D. Moisture Diffusion by the Fractional-Time Model in Convective Drying with Ultrasound-Ethanol Pretreatment of Banana Slices. Innov. Food Sci. Emerg. Technol. 2022, 76, 102933. DOI: 10.1016/j.ifset.2022.102933.
  • Miano, A. C.; Rojas, M. L.; Augusto, P. E. D. Combining Ultrasound, Vacuum and/or Ethanol as Pretreatments to the Convective Drying of Celery Slices. Ultrason. Sonochem. 2021, 79, 105779. DOI: 10.1016/j.ultsonch.2021.105779.
  • Rojas, M. L.; Augusto, P. E. D. Ethanol Pre-Treatment Improves Vegetable Drying and Rehydration: Kinetics, Mechanisms and Impact on Viscoelastic Properties. J. Food Eng. 2018, 233, 17–27. DOI: 10.1016/j.jfoodeng.2018.03.028.
  • Wang, J.; Chen, Y. X.; Wang, H.; Wang, S. Y.; Lin, Z. N.; Zhao, L. L.; Xu, H. D. Ethanol and Blanching Pretreatments Change the Moisture Transfer and Physicochemical Properties of Apple Slices via Microstructure and Cell-Wall Polysaccharides Nanostructure Modification. Food Chem. 2022, 381, 132274. DOI: 10.1016/j.foodchem.2022.132274.
  • Xiao, H. W.; Pan, Z. L.; Deng, L. Z.; El-Mashad, H. M.; Yang, X. H.; Mujumdar, A. S.; Gao, Z. J.; Zhang, Q. Recent Developments and Trends in Thermal Blanching – A Comprehensive Review. Inform. Process. Agric. 2017, 4, 101–127. DOI: 10.1016/j.inpa.2017.02.001.
  • Guo, X.; Hao, Q.; Qiao, X.; Li, M.; Qiu, Z.; Zheng, Z.; Zhang, B. An Evaluation of Different Pretreatment Methods of Hot-Air Drying of Garlic: Drying Characteristics, Energy Consumption and Quality Properties. LWT – Food Sci. Technol. 2023, 180, 114685. DOI: 10.1016/j.lwt.2023.114685.
  • Shewale, S. R.; Hebbar, H. U. Effect of Infrared Pretreatment on Low-Humidity Air Drying of Apple Slices. Drying Technol. 2017, 35, 490–499. DOI: 10.1080/07373937.2016.1190935.
  • Xu, F.; Chen, X. H.; Jin, P.; Wang, X. L.; Wang, J.; Zheng, Y. H. Effect of Ethanol Treatment on Quality and Antioxidant Activity in Postharvest Broccoli Florets. Eur. Food Res. Technol. 2012, 235, 793–800. DOI: 10.1007/s00217-012-1808-6.
  • Talbot, M. J.; White, R. G. Methanol Fixation of Plant Tissue for Scanning Electron Microscopy Improves Preservation of Tissue Morphology and Dimensions. Plant Methods 2013, 9, 36–42. DOI: 10.1186/1746-4811-9-36.
  • Wang, X. L.; Feng, Y. B.; Zhou, C. S.; Sun, Y. H.; Wu, B. G.; Yagoub, A. E. A.; Aboagarib, E. A. A. Effect of Vacuum and Ethanol Pretreatment on Infrared-Hot Air Drying of Scallion (Allium fistulosum). Food Chem. 2019, 295, 432–440. DOI: 10.1016/j.foodchem.2019.05.145.
  • Ren, M. N.; Ren, Z. F.; Chen, L.; Zhou, C. S.; Okonkwo, C. E.; Mujumdar, A. S. Comparison of Ultrasound and Ethanol Pretreatments before Catalytic Infrared Drying on Physicochemical Properties, Drying, and Contamination of Chinese Ginger (Zingiber officinale Roscoe). Food Chem. 2022, 386, 132759. DOI: 10.1016/j.foodchem.2022.132759.
  • Xu, Y. Y.; Xiao, Y. D.; Lagnika, C.; Li, D. J.; Liu, C. Q.; Jiang, N.; Song, J. F.; Zhang, M. A Comparative Evaluation of Nutritional Properties, Antioxidant Capacity and Physical Characteristics of Cabbage (Brassica oleracea Var. capitate Var L.) Subjected to Different Drying Methods. Food Chem. 2020, 309, 124935. DOI: 10.1016/j.foodchem.2019.06.002.
  • Li, F. F.; Li, Q.; Wu, S. G.; Tan, Z. J. Salting-Out Extraction of Allicin from Garlic (Allium sativum L.) Based on Ethanol/Ammonium Sulfate in Laboratory and Pilot Scale. Food Chem. 2017, 217, 91–97. DOI: 10.1016/j.foodchem.2016.08.092.
  • Dorta, E.; Lobo, M. G.; Gonzalez, M. Reutilization of Mango Byproducts: Study of the Effect of Extraction Solvent and Temperature on Their Antioxidant Properties. J. Food Sci. 2012, 77, C80–C88. DOI: 10.1111/j.1750-3841.2011.02477.x.
  • Cunha, R. M. C. D.; Brandão, S. C. R.; Medeiros, R. A. B. D.; Júnior, E. V. D. S.; Silva, J. H. F. D.; Azoubel, P. M. Effect of Ethanol Pretreatment on Melon Convective Drying. Food Chem. 2020, 333, 127502. DOI: 10.1016/j.foodchem.2020.127502.
  • Bhat, T. A.; Hussain, S. Z.; Wani, S. M.; Rather, M. A.; Reshi, M.; Naseer, B.; Qadri, T.; Khalil, A. The Impact of Different Drying Methods on Antioxidant Activity, Polyphenols, Vitamin C and Rehydration Characteristics of Kiwifruit. Food Biosci. 2022, 48, 101821. DOI: 10.1016/j.fbio.2022.101821.
  • Salehi, B.; Zucca, P.; Orhan, I. E.; Azzini, E.; Adetunji, C. O.; Mohammed, S. A.; Banerjee, S. K.; Sharopov, F.; Rigano, D.; Sharifi-Rad, J.; et al. Allicin and Health: A Comprehensive Review. Trends Food Sci. Technol. 2019, 86, 502–516. DOI: 10.1016/j.tifs.2019.03.003.
  • Sun, Y. N.; Zhang, M.; Ju, R. H.; Mujumdar, A. S. Novel Nondestructive NMR Method Aided by Artificial Neural Network for Monitoring the Flavor Changes of Garlic by Drying. Drying Technol. 2021, 39, 1184–1195. DOI: 10.1080/07373937.2020.1821211.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.