Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 13
222
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An adaptive optimization method toward batch-wise variable set point of outlet moisture content for the tobacco drying process

, , , , , , & show all
Pages 2156-2170 | Received 11 Feb 2023, Accepted 30 May 2023, Published online: 21 Jun 2023

References

  • Trojosky, M. Rotary Drums for Efficient Drying and Cooling. Dry. Technol. 2019, 37, 632–651. DOI: 10.1080/07373937.2018.1552597.
  • Bi, S.; Zhang, B.; Mu, L.; Ding, X.; Wang, J. Optimization of Tobacco Drying Process Control Based on Reinforcement Learning. Dry. Technol. 2020, 38, 1291–1299. DOI: 10.1080/07373937.2019.1633662.
  • Mu, L.; Bi, S.; Yu, S.; Liu, X.; Ding, X. An Intelligent Moisture Prediction Method for Tobacco Drying Process Using a Multi-Hierarchical Convolutional Neural Network. Dry. Technol. 2022, 40, 1791–1803. DOI: 10.1080/07373937.2021.1876722.
  • Zhu, M.; Wu, K.; Zhou, Y.; Wang, Z.; Qiao, J.; Wang, Y.; Fan, X.; Nong, Y.; Zi, W. Prediction of Cooling Moisture Content after Cut Tobacco Drying Process Based on a Particle Swarm Optimization-Extreme Learning Machine Algorithm. MBE. 2021, 18, 2496–2507. DOI: 10.3934/mbe.2021127.
  • Wang, T.; Cai, C.; Gao, Y.; Li, M.; Lou, Y.; Kong, B. Adaptive Online Learning for System Identification and in-Advance Optimization under Long Feedback Delay and Concept Drift in Cigarette Production. Dry. Technol. 2022, 40, 3340–3356. DOI: 10.1080/07373937.2022.2029476.
  • Alvarez-López, I.; Llanes-Santiago, O.; Verdegay, J. L. Drying Process of Tobacco Leaves by Using a Fuzzy Controller. Fuzzy Sets Syst. 2005, 150, 493–506. DOI: 10.1016/j.fss.2004.07.019.
  • Hosseinpour, S.; Martynenko, A. Application of Fuzzy Logic in Drying: A Review. Dry. Technol. 2022, 40, 797–826. DOI: 10.1080/07373937.2020.1846192.
  • Hosseinpour, S.; Martynenko, A. An Adaptive Fuzzy Logic Controller for Intelligent Drying. Dry. Technol. 2023, 41, 1110–1132.
  • Bottari, A.; Braccia, L. Optimal Control Structure Selection Based on Economics for Continuous Cross-Flow Grain Dryer. Dry. Technol. 2023, 1–15. DOI: 10.1080/07373937.2023.2167829.
  • Zhou, F.; Peng, H.; Ruan, W.; Wang, D.; Liu, M.; Gu, Y.; Li, L. Cubic-RBF-ARX Modeling and Model-Based Optimal Setting Control in Head and Tail Stages of Cut Tobacco Drying Process. Neural Comput. Appl. 2018, 30, 1039–1053. DOI: 10.1007/s00521-016-2735-4.
  • Chen, A.; Ren, Z.; Fan, Z.; Feng, X. Dead Band Zone Model Predictive Control of Cut Tobacco Drying Process. IEEE Access. 2020, 8, 157781–157792. DOI: 10.1109/ACCESS.2020.3020469.
  • Chen, A.; Ren, Z.; Fan, Z.; Feng, X. Two-Layered Model Predictive Control Strategy of the Cut Tobacco Drying Process. IEEE Access. 2020, 8, 155697–155709. DOI: 10.1109/ACCESS.2020.3018476.
  • Pang, S.; Jia, J.; Ding, X.; Yu, S.; Liu, Y. Intelligent Control in the Application of a Rotary Dryer for Reduction in the over-Drying of Cut Tobacco. Appl. Sci. 2021, 11, 8205. DOI: 10.3390/app11178205.
  • Amini, G.; Salehi, F.; Rasouli, M. Drying Kinetics of Basil Seed Mucilage in an Infrared Dryer: Application of GA-ANN and ANFIS for the Prediction of Drying Time and Moisture Ratio. J. Food Process. Preserv. 2021, 45, e15258. DOI: 10.1111/jfpp.15258.
  • Taheri, S.; Brodie, G.; Gupta, D. Optimised ANN and SVR Models for Online Prediction of Moisture Content and Temperature of Lentil Seeds in a Microwave Fluidised Bed Dryer. Comput. Electron. Agric. 2021, 182, 106003. DOI: 10.1016/j.compag.2021.106003.
  • Zhou, H.; Huang, M.; Zhu, Q.; Zhang, M. Developing C-LSTM Model for Evaluating Moisture Content of Carrot Slices during Drying. Dry. Technol. 2022, 40, 2964–2974. DOI: 10.1080/07373937.2021.1983822.
  • Yin, J.; Chen, C. Quality Prediction Model Based on Variable-Learning-Rate Neural Networks in Tobacco Redrying Process. In Proceedings of the 2016 5th International Conference on Measurement, Instrumentation and Automation (ICMIA 2016), 2016. DOI: 10.2991/icmia-16.2016.139.
  • Yuan, C.; Ding, X.; Hou, R. Prediction Method for Moisture Content in Dried Cut Tobacco Based on Combination Model of WNN and ARX. Presented at the 2018 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), 2018; pp 155–160. DOI: 10.1109/FSKD.2018.8687157.
  • Yu, S.; Bi, S.; Ding, X.; Zhang, G. Multichannel Convolutional Neural Network Based Soft Sensing Approach for Measuring Moisture Content in Tobacco Drying Process. In Frontier Computing; Hung, J.C., Yen, N.Y., Chang, J.W., Eds.; Springer Nature Singapore: Singapore, 2022; pp 130–142
  • Sutskever, I.; Vinyals, O.; Le, Q. V. Sequence to Sequence Learning with Neural Networks. In Advances in Neural Information Processing Systems; Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., Weinberger, K., Eds.; Curran Associates, Inc.: United States, 2014; Vol. 27.
  • He, Y.; Li, B.; Pu, Y.; Jin, W.; Zhou, X.; Jin, C. Uncertainty-Aware Data-Driven Tobacco Loosening and Conditioning Process Moisture Prediction and Control Optimization. Presented at the 2021 IEEE 10th Data Driven Control and Learning Systems Conference (DDCLS), 2021; pp 600–607. DOI: 10.1109/DDCLS52934.2021.9455522.
  • Li, Z.; Feng, Z.; Zhao, L.; Chen, J.; Gao, Y.; Sun, S.; Ma, Y. Construction and Application of the Prediction Model of Outlet Moisture in the Loosening and Conditioning Process. In International Conference on Electronic Information Engineering, Big Data, and Computer Technology (EIBDCT 2022); Zhong, G., Ed.; SPIE, 2022; Vol. 12256, p 122562Y. DOI: 10.1117/12.2635392.
  • Ma, Y.; Yuan, R.; He, B.; Jiang, H.; Liu, Z.; Huang, Y.; Tang, J.; Luo, J.; Zhou, B.; Qian, J.; et al. Temperature Variation and Distribution in Tobacco Casing Cylinder Based on Infrared Thermal Imaging Detection; Springer Singapore: Singapore, 2018; pp 389–408
  • Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. DOI: 10.1162/neco.1997.9.8.1735.
  • Ilse, M.; Tomczak, J.; Welling, M. Attention-Based Deep Multiple Instance Learning. In Proceedings of the 35th International Conference on Machine Learning, 10–15 Jul.; Dy, J., Krause, A., Eds.; PMLR, 2018; Vol. 80, pp 2127–2136.
  • Friedman, J. H. Stochastic Gradient Boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. DOI: 10.1016/S0167-9473(01)00065-2.
  • Cejnek, M.; Vrba, J. Online Centered NLMS Algorithm for Concept Drift Compensation. NNW. 2021, 31, 329–341. DOI: 10.14311/NNW.2021.31.018.
  • Engel, Y.; Mannor, S.; Meir, R. The Kernel Recursive Least-Squares Algorithm. IEEE Trans. Signal Process. 2004, 52, 2275–2285. DOI: 10.1109/TSP.2004.830985.
  • Mandic, D. A Generalized Normalized Gradient Descent Algorithm. IEEE Signal Process. Lett. 2004, 11, 115–118. DOI: 10.1109/LSP.2003.821649.
  • Liu, C.; Jiang, M. Robust Adaptive Filter with Lncosh Cost. Signal Process. 2020, 168, 107348. DOI: 10.1016/j.sigpro.2019.107348.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.