Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 13
158
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Hot-air drying behavior of lignite and quantitative characterization for its surface damage

, , , , , & show all
Pages 2171-2188 | Received 03 Feb 2023, Accepted 06 Jun 2023, Published online: 24 Jun 2023

References

  • Lu, S.; Bai, X.; Zhang, X.; Li, W.; Tang, Y. The Impact of Climate Change on the Sustainable Development of Regional Economy. J. Cleaner Prod. 2019, 233, 1387–1395. DOI: 10.1016/j.jclepro.2019.06.074.
  • Xu, Y.; Wang, J.; Zhang, G.; Zhang, X.; Qin, X.; Zhang, Y. Evaluation of Hydrothermal Treatment on Physicochemical Properties and Re-Adsorption Behaviors of Lignite. Energy 2022, 244, 122597. DOI: 10.1016/j.energy.2021.122597.
  • Cheng, G.; Li, Z.; Ma, Z.; Cao, Y.; Sun, L.; Jiang, Z. Optimization of Collector and Its Action Mechanism in Lignite Flotation. Powder Technol. 2019, 345, 182–189. DOI: 10.1016/j.powtec.2019.01.011.
  • Feng, L.; Yuan, C. Z.; Mao, L. Z.; Yan, C. Y.; Jiang, X. G.; Liu, J.; Liu, X. C. Water Occurrence in Lignite and Its Interaction with Coal Structure. Fuel 2018, 219, 288–295. DOI: 10.1016/j.fuel.2018.01.097.
  • Liu, R.; Liu, M.; Han, X.; Yan, J. Drying Characteristics and Kinetics Analyses for Yimin Lignite at Various Temperatures. Drying Technol. 2021, 39, 912–924. DOI: 10.1080/07373937.2020.1729174.
  • Heinze, C.; May, J.; Langner, E.; Strohle, J.; Epple, B. High Temperature Winkler Gasification of Rhenish Lignite in an Optimized 500 kWth Pilot Plant. Fuel 2023, 333, 126289. DOI: 10.1016/j.fuel.2022.126289.
  • Liu, X.; Li, G.; Xie, R.; Zhao, Z.; Cui, P. A Review on Moisture Re-Adsorption of Lignite Treated Using Different Drying Techniques. Drying Technol. 2022, 40, 1263–1277. DOI: 10.1080/07373937.2020.1871007.
  • Xin, F. D.; Xu, H.; Tang, D. Z.; Cao, L. K. An Improved Method to Determine Accurate Porosity of Low-Rank Coals by Nuclear Magnetic Resonance. Fuel Process Technol. 2020, 205, 106435. DOI: 10.1016/j.fuproc.2020.106435.
  • Jangam, S. V.; Karthikeyan, M.; Mujumdar, A. S. A Critical Assessment of Industrial Coal Drying Technologies: Role of Energy, Emissions, Risk and Sustainability. Drying Technol. 2011, 29, 395–407. DOI: 10.1080/07373937.2010.498070.
  • Rong, L. K.; Xiao, J. H.; Wang, X. P.; Sun, J. L.; Jia, F. J.; Chu, M. Low-Rank Coal Drying Behaviors under Negative Pressure: Thermal Fragmentation, Volume Shrinkage and Changes in Pore Structure. J. Cleaner Prod. 2020, 272, 122572. DOI: 10.1016/j.jclepro.2020.122572.
  • Wen, Y. L.; Liao, J. J.; Liu, X.; Wei, F. J.; Chang, L. P. Removal Behaviors of Moisture in Raw Lignite and Moisturized Coal and Their Dewatering Kinetics Analysis. Drying Technol. 2017, 35, 88–96. DOI: 10.1080/07373937.2016.1160246.
  • Yang, Y. K.; Liao, J. J.; Mo, Q.; Chang, L. P.; Bao, W. R. Evolution of Physical and Chemical Structures in Lignite during Dewatering Process and Their Effects on Combustion Reactivity. Energy Fuels 2019, 33, 3891–3898. DOI: 10.1021/acs.energyfuels.8b04239.
  • Lu, X. F.; Liao, J. J.; Mo, Q.; Wen, Y. L.; Bao, W. R.; Chang, L. P. Evolution of Pore Structure during Pressurized Dewatering and Effects on Moisture Readsorption of Lignite. ACS Omega 2019, 4, 7113–7121. DOI: 10.1021/acsomega.9b00381.
  • Gao, M. Q.; Ji, P. C.; Miao, Z. Y.; Wan, K. J.; He, Q. Q.; Xue, S. W.; Pei, Z. Pore Structure Evolution and Fractal Characteristics of Zhaotong Lignite during Drying. Fuel 2020, 267, 117309. DOI: 10.1016/j.fuel.2020.117309.
  • Cheng, C.; Gao, M. Q.; Miao, Z. Y.; Wan, K. J.; He, Q. Q. Structural Changes Mechanism of Lignite during Drying: Correlation between Macroscopic and Microscopic. Fuel 2023, 339, 126955. DOI: 10.1016/j.fuel.2022.126955.
  • Tang, J.; Feng, L.; Li, Y.; Liu, J.; Liu, X. Fractal and Pore Structure Analysis of Shengli Lignite during Drying Process. Powder Technol. 2016, 303, 251–259. DOI: 10.1016/j.powtec.2016.09.042.
  • Feng, G.; Niu, X.; Liao, J.; Han, Y.; Bai, Z.; Li, W. Correlation between Drying Behaviors of Brown Coal and Its Pore Structures. Energy Fuels 2019, 33, 6027–6037. DOI: 10.1021/acs.energyfuels.9b00657.
  • Miao, Z. Y.; Chen, J. P.; He, Q. Q.; Wan, Y. J.; Wan, K. J.; Gao, M. Q. Experimental Study of Thermal Fragmentation of Lignite in Drying Process. Drying Technol. 2019, 37, 1731–1742. DOI: 10.1080/07373937.2019.1565574.
  • Cui, T. M.; Xu, J. L.; Fan, W. K.; Chang, Q. H.; Yu, G. S.; Wang, F. C. Experimental Study on Fragmental Behavior of Coals and Biomasses during Rapid Pyrolysis. Bioresour. Technol. 2016, 222, 439–447. DOI: 10.1016/j.biortech.2016.09.131.
  • Xu, Y.; Pei, Z.; Gao, M.; He, Q.; Miao, Z.; Wan, K.; Qi, Z. Thermal Fragmentation and Pulverization Behavior of Lignite during the Vibration Drying Process and Its Grey Relational Analysis of Multi-Factors. Drying Technol. 2023, 41, 549–560. DOI: 10.1080/07373937.2022.2107664.
  • Paprika, M. J.; Komatina, M. S.; Dakic, D. V.; Nemoda, S. D. Prediction of Coal Primary Fragmentation and Char Particle Size Distribution in Fluidized Bed. Energy Fuels 2013, 27, 5488–5494. DOI: 10.1021/ef400875q.
  • Cui, T. M.; Zhou, Z. J.; Dai, Z. H.; Li, C.; Yu, G. S.; Wang, F. C. Primary Fragmentation Characteristics of Coal Particles during Rapid Pyrolysis. Energy Fuels 2015, 29, 6231–6241. DOI: 10.1021/acs.energyfuels.5b01289.
  • Pusat, S.; Akkoyunlu, M.; Erdem, H. Fragmentation of a Turkish Low Rank Coal during Fixed-Bed Evaporative Drying Process. Int. J. Coal Preparation Utilization 2021, 41, 117–125. DOI: 10.1080/19392699.2018.1451847.
  • He, Q.; Chen, J.; Miao, Z.; Wan, K.; Tian, J.; Chen, Z.; Wan, Y. Thermal Fragmentation and Pulverization Properties of Lignite in Drying Process and Its Mechanism. Drying Technol. 2018, 36, 1404–1412. DOI: 10.1080/07373937.2017.1405436.
  • Chen, J. P.; Miao, Z. Y.; Wan, Y. J.; Chen, Z. S.; He, Q. Q.; Tian, J. Y.; Wan, K. J. Effect of Moisture Distribution in Pore Structure on Fragmentation Characteristics of Lignite. Drying Technol. 2018, 36, 1949–1957. DOI: 10.1080/07373937.2018.1430040.
  • Wang, H.; Yang, D.; Chen, X.; Liu, H.; Zhao, K.; Yang, H.; Wu, J. Primary Fragmentation Characteristics in the Process of Coal Slime Combustion. Combust. Sci. Technol. 2023, 195, 1328–1345. DOI: 10.1080/00102202.2021.1998822.
  • Gao, M. Q.; Wan, K. J.; Miao, Z. Y.; He, Q. Q.; Xue, S. W.; Dong, X. Y. Hot-Air Drying Shrinkage Process of Lignite and Its Cracking Mechanism. Fuel 2022, 316, 123187. DOI: 10.1016/j.fuel.2022.123187.
  • Kiriyama, T.; Sasaki, H.; Hashimoto, A.; Kaneko, S.; Maeda, M. Experimental Observations and Numerical Modeling of a Single Coarse Lignite Particle Dried in Superheated Steam. Mater. Trans. 2013, 54, 1725–1734. DOI: 10.2320/matertrans.M-M2013817.
  • Gao, M. Q.; Wan, K. J.; Miao, Z. Y.; He, Q. Q.; Ji, P. C.; Pei, Z. Hot-Air Drying Behavior and Fragmentation Characteristic of Single Lignite Particle. Fuel 2019, 247, 209–216. DOI: 10.1016/j.fuel.2019.03.055.
  • Yang, Y. L.; Zheng, K. Y.; Li, Z. W.; Li, Z. H.; Si, L. L.; Hou, S. S.; Duan, Y. J. Experimental Study on Pore-Fracture Evolution Law in the Thermal Damage Process of Coal. Int. J. Rock. Mech. Min. Sci. 2019, 116, 13–24. DOI: 10.1016/j.ijrmms.2019.03.004.
  • Dong, Z. W.; Yu, W. H.; Jia, T. G.; Guo, S. L.; Geng, W. L.; Peng, B. Experimental Study on the Variation of Surface Widths of Lignite Desiccation Cracks during Low-Temperature Drying. ACS Omega 2021, 6, 19409–19418. DOI: 10.1021/acsomega.1c01031.
  • Gao, M. Q.; Wan, K. J.; Miao, Z. Y.; He, Q. Q.; Ji, P. C.; Xue, S. W.; Dong, X. Y. Moisture Removal Behaviour of Single Hard Lignite Particle during Drying and Quantitative Characterization for Its Surface Damage. Can. J. Chem. Eng. 2022, 100, 2861–2871. DOI: 10.1002/cjce.24315.
  • Tahmasebi, A.; Yu, J.; Han, Y.; Zhao, H.; Bhattacharya, S. A Kinetic Study of Microwave and Fluidized-Bed Drying of a Chinese Lignite. Chem. Eng. Res. Des. 2014, 92, 54–65. DOI: 10.1016/j.cherd.2013.06.013.
  • Pentland. Fractal-Based Description of Natural Scenes. IEEE Trans. Pattern Anal. Mach. Intell. 1984, 6, 661–674. DOI: 10.1109/tpami.1984.4767591.
  • Zhao, H. Y.; Li, Y. H.; Song, Q.; Liu, S. C.; Ma, L.; Shu, X. Q. Catalytic Reforming of Volatiles from co-Pyrolysis of Lignite Blended with Corn Straw over Three Iron Ores: Effect of Iron Ore Types on the Product Distribution, Carbon-Deposited Iron Ore Reactivity and Its Mechanism. Fuel 2021, 286, 119398. DOI: 10.1016/j.fuel.2020.119398.
  • Han, Y. N.; Bai, Z. Q.; Liao, J. J.; Bai, J.; Dai, X.; Li, X.; Xu, J. L.; Li, W. Effects of Phenolic Hydroxyl and Carboxyl Groups on the Concentration of Different Forms of Water in Brown Coal and Their Dewatering Energy. Fuel Process Technol. 2016, 154, 7–18. DOI: 10.1016/j.fuproc.2016.08.006.
  • Wang, L.; Wang, Z.; Song, X.; Wang, K.; Zhao, Z. Study on Behavior of Surface Short Cracks for Low Cycle at High Temperature and Complex Stress State Based on Fractal Theory. JME 2011, 47, 49–53. DOI: 10.3901/JME.2011.14.049.
  • Hou, J.; Li, J.; Zhao, L. Experimental Study on Seepage-Stress Coupling Failure Characteristics and Fracture Fractal Characteristics of Cemented Gangue-Fly Ash Backfill with Defects. Theor. Appl. Fract. Mech. 2022, 122, 103658. DOI: 10.1016/j.tafmec.2022.103658.
  • Zhao, Z.; Yang, J.; Zhang, D.; Peng, H. Effects of Wetting and Cyclic Wetting–Drying on Tensile Strength of Sandstone with a Low Clay Mineral Content. Rock. Mech. Rock. Eng. 2017, 50, 485–491. DOI: 10.1007/s00603-016-1087-9.
  • Müller, U.; Jošcák, T.; Teischinger, A. Strength of Dried and Re-Moistened Spruce Wood Compared to Native Wood. Holz. Roh. Werkst. 2003, 61, 439–443. DOI: 10.1007/s00107-003-0414-5.
  • Suuberg, E. M.; Otake, Y.; Yun, Y.; Deevi, S. C. Role of Moisture in Coal Structure and the Effects of Drying upon the Accessibility of Coal Structure. Energy Fuels 1993, 7, 384–392. DOI: 10.1021/ef00039a009.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.