Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 3
117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of high-voltage electrostatic field-assisted freeze-thaw pretreatment on the microwave freeze drying process of hawthorn

, , , &
Pages 477-491 | Received 09 Dec 2022, Accepted 24 Jun 2023, Published online: 15 Jul 2023

References

  • Duan, X.; Liu, W. C.; Ren, G. Y.; Yang, X. T. Effects of Different Drying Methods on the Physical Characteristics and Flavor of Dried Hawthorns (Crataegus Spp.). Dry. Technol. 2017, 35, 1412–1421. DOI: 10.1080/07373937.2017.1325898.
  • Cui, Y.; Du, K.; Hou, S.; Yang, R.; Qi, L.; Li, J.; Chang, Y. A Comprehensive Strategy Integrating Metabolomics with Multiple Chemometric for Discovery of Function Related Active Markers for Assessment of Foodstuffs: A Case of Hawthorn (Crataegus Cuneata) Fruits. Food Chem. 2022, 383, 132464. DOI: 10.1016/j.foodchem.2022.132464.
  • Lin, Y. T.; Lin, H. R.; Yang, C. S.; Liaw, C. C.; Sung, P. J.; Kuo, Y. H.; Cheng, M. J.; Chen, J. J. Antioxidant and Anti-Alpha-Glucosidase Activities of Various Solvent Extracts and Major Bioactive Components from the Fruits of Crataegus Pinnatifida. Antioxidants (Basel). 2022, 11, 320. DOI: 10.3390/antiox11020320.
  • Eyiz, V.; Tontul, İ.; Türker, S. Effect of Variety, Drying Methods and Drying Temperature on Physical and Chemical Properties of Hawthorn Leather. Food Measure. 2020, 14, 3263–3269. DOI: 10.1007/s11694-020-00574-2.
  • Li, M.; Wang, B.; Wang, Y.; Liu, J.; Zhang, M. Evaluation of the Uniformity, Quality and Energy Cost of Four Types of Vegetables and Fruits after Pilot-Scale Pulse-Spouted Bed Microwave (915 Mhz) Freeze-Drying. Dry. Technol. 2023, 41, 290–307. DOI: 10.1080/07373937.2022.2089163.
  • Bhandari, B. Handbook of Industrial Drying, Fourth Edition Edited by A. S. Mujumdar. Dry. Technol. 2015, 33, 128–129. DOI: 10.1080/07373937.2014.983704.
  • Zhang, S.; Pan, Y.; Wang, W.; Lin, R.; Zhang, S. Microwave Freeze-Drying of Coffee Solution Frozen with Initial Pores Assisted by Wave-Absorbing Medium. Dry. Technol. 2023, 41, 419–433. DOI: 10.1080/07373937.2022.2095399.
  • Bantle, M.; Hanssler, J. Ultrasonic Convective Drying Kinetics of Clipfish during the Initial Drying Period. Dry. Technol. 2013, 31, 1307–1316. DOI: 10.1080/07373937.2013.792093.
  • Jiang, M.; Bai, X.; Sun, J.; Zhu, W. Implication of Ultrasonic Power and Frequency for the Ultrasonic Vacuum Drying of Honey. Dry. Technol. 2021, 39, 1389–1400. DOI: 10.1080/07373937.2020.1750026.
  • Gachovska, T. K.; Adedeji, A. A.; Ngadi, M.; Raghavan, G. V. S. Drying Characteristics of Pulsed Electric Field-Treated Carrot. Dry. Technol. 2008, 26, 1244–1250. DOI: 10.1080/07373930802307175.
  • Zhang, X.-L.; Zhong, C.-S.; Mujumdar, A. S.; Yang, X.-H.; Deng, L.-Z.; Wang, J.; Xiao, H.-W. Cold Plasma Pretreatment Enhances Drying Kinetics and Quality Attributes of Chili Pepper (Capsicum Annuum L.). J. Food Eng. 2019, 241, 51–57. DOI: 10.1016/j.jfoodeng.2018.08.002.
  • Ding, C.; Lu, J.; Song, Z.; Bao, S. The Drying Efficiency of Electrohydrodynamic (Ehd) Systems Based on the Drying Characteristics of Cooked Beef and Mathematical Modeling. JAE. 2014, 46, 455–461. DOI: 10.3233/JAE-141781.
  • Hu, R.; Zhang, M.; Mujumdar, A. S. Novel Assistive Technologies for Efficient Freezing of Pork Based on High Voltage Electric Field and Static Magnetic Field: A Comparative Study. Innovative Food Sci. Emerg. Technol. 2022, 80, 103087. DOI: 10.1016/j.ifset.2022.103087.
  • Kao, N.-Y.; Tu, Y.-F.; Sridhar, K.; Tsai, P.-J. Effect of a High Voltage Electrostatic Field (Hvef) on the Shelf-Life of Fresh-Cut Broccoli (Brassica Oleracea Var. Italica). LWT. 2019, 116, 108532. DOI: 10.1016/j.lwt.2019.108532.
  • Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A. Effect of Combined High Voltage Electrostatic with Air Blast Freezing on Quality Attributes of Lamb Meat. J. Food Process Eng. 2018, 41, e12811. DOI: 10.1111/jfpe.12811.
  • Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A. Effect of Freezing under Electrostatic Field on the Quality of Lamb Meat. Innovative Food Sci. Emerg. Technol. 2016, 37, 68–73. DOI: 10.1016/j.ifset.2016.07.028.
  • Dalvi-Isfahan, M.; Hamdami, N.; Le-Bail, A.; Xanthakis, E. The Principles of High Voltage Electric Field and Its Application in Food Processing: A Review. Food Res. Int. 2016, 89, 48–62. DOI: 10.1016/j.foodres.2016.09.002.
  • Zhu, L.; Liang, X.; Lu, Y.; Tian, S.; Chen, J.; Lin, F.; Fang, S. Effect of Freeze-Thaw Cycles on Juice Properties, Volatile Compounds and Hot-Air Drying Kinetics of Blueberry. Foods. 2021, 10, 2362. DOI: 10.3390/foods10102362.
  • Jangle, R. D.; Thorat, B. N. Effect of Freeze-Thawing Study on Curcumin Liposome for Obtaining Better Freeze-Dried Product. Dry. Technol. 2013, 31, 966–974. DOI: 10.1080/07373937.2013.769003.
  • Vollmannová, A.; Tóth, T.; Urminská, D.; Poláková, Z.; Timoracká, M.; Margitanová, E. Anthocyanins Content in Blueberries (Vaccinium Corymbosum L.) in Relation to Freezing Duration. Czech J. Food Sci. 2009, 27, S204–S206. DOI: 10.17221/1069-CJFS.
  • Wang, Y.; Zhang, M.; Mujumdar, A. S.; Mothibe, K. J.; Roknul Azam, S. M. Study of Drying Uniformity in pulsed spouted microwave–Vacuum Drying of Stem Lettuce Slices with Regard to Product Quality. Dry. Technol. 2013, 31, 91–101. DOI: 10.1080/07373937.2012.721431.
  • Xu, B.; Feng, M.; Chitrakar, B.; Wei, B.; Wang, B.; Zhou, C.; Ma, H.; Wang, B.; Chang, L.; Ren, G.; Duan, X. Selection of Drying Techniques for Pingyin Rose on the Basis of Physicochemical Properties and Volatile Compounds Retention. Food Chem. 2022, 385, 132539. DOI: 10.1016/j.foodchem.2022.132539.
  • Qiu, L.; Zhang, M.; Mujumdar, A. S.; Chang, L. Convenient Use of near-Infrared Spectroscopy to Indirectly Predict the Antioxidant Activity of Edible Rose (Rose Chinensis Jacq "Crimsin Glory" H.T.) Petals during Infrared Drying. Food Chem. 2022, 369, 130951. DOI: 10.1016/j.foodchem.2021.130951.
  • Lu, C.; Ding, J.; Park, H. K.; Feng, H. High Intensity Ultrasound as a Physical Elicitor Affects Secondary Metabolites and Antioxidant Capacity of Tomato Fruits. Food Control. 2020, 113, 107176. DOI: 10.1016/j.foodcont.2020.107176.
  • Correa-Betanzo, J.; Allen-Vercoe, E.; McDonald, J.; Schroeter, K.; Corredig, M.; Paliyath, G. Stability and Biological Activity of Wild Blueberry (Vaccinium Angustifolium) Polyphenols during Simulated in Vitro Gastrointestinal Digestion. Food Chem. 2014, 165, 522–531. DOI: 10.1016/j.foodchem.2014.05.135.
  • Lammerskitten, A.; Mykhailyk, V.; Wiktor, A.; Toepfl, S.; Nowacka, M.; Bialik, M.; Czyżewski, J.; Witrowa-Rajchert, D.; Parniakov, O. Impact of Pulsed Electric Fields on Physical Properties of Freeze-Dried Apple Tissue. Innovative Food Sci. Emerg. Technol. 2019, 57, 102211. DOI: 10.1016/j.ifset.2019.102211.
  • Liu, C.; Pirozzi, A.; Ferrari, G.; Vorobiev, E.; Grimi, N. Impact of Pulsed Electric Fields on Vacuum Drying Kinetics and Physicochemical Properties of Carrot. Food Res. Int. 2020, 137, 109658. DOI: 10.1016/j.foodres.2020.109658.
  • Xu, B-g.; Zhang, M.; Bhandari, B.; Cheng, X-f.; Sun, J. Effect of Ultrasound Immersion Freezing on the Quality Attributes and Water Distributions of Wrapped Red Radish. Food Bioprocess Technol. 2015, 8, 1366–1376. DOI: 10.1007/s11947-015-1496-x.
  • Jiang, J.; Zhang, M.; Devahastin, S.; Yu, D. Effect of Ultrasound-Assisted Osmotic Dehydration Pretreatments on Drying and Quality Characteristics of Pulsed Fluidized Bed Microwave Freeze-Dried Strawberries. LWT. 2021, 145, 111300. DOI: 10.1016/j.lwt.2021.111300.
  • Lammerskitten, A.; Wiktor, A.; Mykhailyk, V.; Samborska, K.; Gondek, E.; Witrowa-Rajchert, D.; Toepfl, S.; Parniakov, O. Pulsed Electric Field Pre-Treatment Improves Microstructure and Crunchiness of Freeze-Dried Plant Materials: Case of Strawberry. LWT. 2020, 134, 110266. DOI: 10.1016/j.lwt.2020.110266.
  • Zielinska, M.; Sadowski, P.; Błaszczak, W. Freezing/Thawing and Microwave-Assisted Drying of Blueberries (Vaccinium Corymbosum L.). LWT – Food Sci. Technol. 2015, 62, 555–563. DOI: 10.1016/j.lwt.2014.08.002.
  • Ando, Y.; Hagiwara, S.; Nabetani, H.; Sotome, I.; Okunishi, T.; Okadome, H.; Orikasa, T.; Tagawa, A. Improvements of Drying Rate and Structural Quality of Microwave-Vacuum Dried Carrot by Freeze-Thaw Pretreatment. LWT. 2019, 100, 294–299. DOI: 10.1016/j.lwt.2018.10.064.
  • Jiang, Q.; Zhang, M.; Mujumdar, A. S.; Hu, R. Combination Strategy of Co2 Pressurization and Ultrasound: To Improve the Freezing Quality of Fresh-Cut Honeydew Melon. Food Chem. 2022, 383, 132327. DOI: 10.1016/j.foodchem.2022.132327.
  • Makroo, H. A.; Srivastava, B.; Jabeen, A. Influence of Mild Electric Field (Mef) on Polyphenol Oxidase and Quality Attributes of Pineapple Juice during Ohmic Heating. LWT – Food Sci. Technol. 2022, 156, 113021. DOI: 10.1016/j.lwt.2021.113021.
  • Ribas-Agustí, A.; Martín-Belloso, O.; Soliva-Fortuny, R.; Elez-Martínez, P. Influence of Pulsed Electric Fields Processing on the Bioaccessible and Non-Bioaccessible Fractions of Apple Phenolic Compounds. J. Funct. Foods. 2019, 59, 206–214. DOI: 10.1016/j.jff.2019.05.041.
  • Athanasiadis, V.; Lakka, A.; Palaiogiannis, D.; Pappas, V. M.; Bozinou, E.; Ntourtoglou, G.; Makris, D. P.; Dourtoglou, V. G.; Lalas, S. I. Pulsed Electric Field and Salvia Officinalis L. Leaves: A Successful Combination for the Extraction of High Value Added Compounds. Foods. 2021, 10, 2014. DOI: 10.3390/foods10092014.
  • Brochier, B.; Mercali, G. D.; Marczak, L. D. F. Effect of Ohmic Heating Parameters on Peroxidase Inactivation, Phenolic Compounds Degradation and Color Changes of Sugarcane Juice. Food Bioprod. Process. 2018, 111, 62–71. DOI: 10.1016/j.fbp.2018.07.003.
  • Mercali, G. D.; Gurak, P. D.; Schmitz, F.; Marczak, L. D. Evaluation of Non-Thermal Effects of Electricity on Anthocyanin Degradation during Ohmic Heating of Jaboticaba (Myrciaria Cauliflora) Juice. Food Chem. 2015, 171, 200–205. DOI: 10.1016/j.foodchem.2014.09.006.
  • Chen, F.; Zhang, M.; Devahastin, S.; Yu, D. Comparative Evaluation of the Properties of Deep-Frozen Blueberries Dried by Vacuum Infrared Freeze Drying with the Use of Co2 Laser Perforation, Ultrasound, and Freezing–Thawing as Pretreatments. Food Bioprocess Technol. 2021, 14, 1805–1816. DOI: 10.1007/s11947-021-02677-0.
  • Holzwarth, M.; Korhummel, S.; Carle, R.; Kammerer, D. R. Evaluation of the Effects of Different Freezing and Thawing Methods on Color, Polyphenol and Ascorbic Acid Retention in Strawberries (Fragaria × Ananassa Duch.). Food Res. Int. 2012, 48, 241–248. DOI: 10.1016/j.foodres.2012.04.004.
  • Jiao, Y.; Li, D.; Chang, Y.; Xiao, Y. Effect of Freeze-Thaw Pretreatment on Extraction Yield and Antioxidant Bioactivity of Corn Carotenoids (Lutein and Zeaxanthin). J. Food Qual. 2018, 2018, 1–8. DOI: 10.1155/2018/9843503.
  • Chen, B.; Zhang, M.; Wang, Y.; Devahastin, S.; Yu, D. Comparative Study of Conventional and Novel Combined Modes of Microwave- and Infrared-Assisted Thawing on Quality of Frozen Green Pepper, Carrot and Cantaloupe. LWT. 2022, 154, 112842. DOI: 10.1016/j.lwt.2021.112842.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.