Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 3
190
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Mass transfer parameters and quality characteristics of aonla slices under refractance window drying

, , , &
Pages 492-505 | Received 27 Mar 2023, Accepted 30 Jun 2023, Published online: 18 Jul 2023

References

  • Wang, H.; Liu, Z. L.; Vidyarthi, S. K.; Wang, Q. H.; Gao, L.; Li, B. R.; Wei, Q.; Liu, Y. H.; Xiao, H. W. Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Microstructure, and Energy Consumption of Potato (Solanum tuberosum L.) Cubes. Dry. Technol. 2021, 39, 418–431. DOI: 10.1080/07373937.2020.1818254.
  • Goraya, R. K.; Bajwa, U. Enhancing the Functional Properties and Nutritional Quality of Ice Cream with Processed Amla (Indian Goosefile Berry). J. Food Sci. Technol. 2015, 52, 7861–7871. DOI: 10.1007/s13197-015-1877-1.
  • Gudapaty, P.; Indavarapu, S.; Korwar, G. R.; Shankar, A. K.; Adake, R. K. V.; Bandi, V.; Kanchu, S. R. Effect of Open Air Drying, LPG Based Drier and Pretreatments on the Quality of Indian Gooseberry (Aonla). J. Food Sci. Technol. 2010, 47, 541–548. DOI: 10.1007/s13197-010-0093-2.
  • Prajapati, V. K.; Nema, P. K.; Rathore, S. S. Effect of Pretreatment and Drying Methods on Quality of Value-Added Dried Aonla (Emblica Officinalis Gaertn) Shreds. J. Food Sci. Technol. 2011, 48, 45–52. DOI: 10.1007/s13197-010-0124-z.
  • Alam, M.; Amarjit, S.; Sawhney, B. K. Response Surface Optimization of Osmotic Dehydration Process for Aonla Slices. J. Food Sci. Technol. 2010, 47, 47–54. DOI: 10.1007/s13197-010-0014-4.
  • Murthy, Z. V. P.; Joshi, D. Fluidized Bed Drying of Aonla (Emblica Officinalis). Dry. Technol. 2007, 25, 883–889. DOI: 10.1080/07373930701370290.
  • Poonam, M.; Vijeyta, S.; Deepmala, V.O P. C. Physico-Chemical Properties of Chakiya Variety of Amla (Emblica Officinalis) and Effect of Different Dehydration Methods on Quality of Powder. Afr. J. Food Sci. 2009, 3, 303–306.
  • Mishra, P.; Mishra, S.; Mahanta, C. L. Effect of Maltodextrin Concentration and Inlet Temperature During Spray Drying on Physicochemical and Antioxidant Properties of Amla (Emblica Officinalis) Juice Powder. Food Bioprod. Process 2014, 92, 252–258. DOI: 10.1016/j.fbp.2013.08.003.
  • Castoldi, M.; Zotarelli, M. F.; Durigon, A.; Carciofi, B. A. M.; Laurindo, J. B. Production of Tomato Powder by Refractance Window Drying. Dry. Technol. 2015, 33, 1463–1473. DOI: 10.1080/07373937.2014.989327.
  • Santos, S. D. J. L.; Canto, H. K. F.; da Silva, L. H. M.; Rodrigues, A. M. D. C. Characterization and Properties of Purple Yam (Dioscorea Trifida) Powder Obtained by Refractance Window Drying. Dry. Technol. 2022, 40, 1103–1113. DOI: 10.1080/07373937.2020.1847140.
  • Mrkić, V.; Ukrainczyk, M.; Tripalo, B. Applicability of Moisture Transfer Bi–Di Correlation for Convective Drying of Broccoli. J. Food Eng. 2007, 79, 640–646. DOI: 10.1016/j.jfoodeng.2006.01.078.
  • Rajoriya, D.; Shewale, S. R.; Hebbar, H. U. Refractance Window Drying of Apple Slices: Mass Transfer Phenomena and Quality Parameters. Food Bioprocess Technol. 2019, 12, 1646–1658. DOI: 10.1007/s11947-019-02334-7.
  • Rahman, M. S.; Al-Shamsi, Q. H.; Bengtsson, G. B.; Sablani, S. S.; Al-Alawi, A. Drying Kinetics and Allicin Potential in Garlic Slices During Different Methods of Drying. Dry. Technol. 2009, 27, 467–477. DOI: 10.1080/07373930802683781.
  • Bezerra, C. V.; da Silva, L. H. M.; Corrêa, D. F.; Rodrigues, A. M. A Modeling Study for Moisture Diffusivities and Moisture Transfer Coefficients in Drying of Passion Fruit Peel. Int. J. Heat Mass Transfer 2015, 85, 750–755. DOI: 10.1016/j.ijheatmasstransfer.2015.02.027.
  • Rurush, E.; Alvarado, M.; Palacios, P.; Flores, Y.; Rojas, M. L.; Miano, A. C. Drying Kinetics of Blueberry Pulp and Mass Transfer Parameters: Effect of Hot Air and Refractance Window Drying at Different Temperatures. J. Food Eng. 2022, 320, 110929. DOI: 10.1016/j.jfoodeng.2021.110929.
  • McMinn, W. A. M. Prediction of Moisture Transfer Parameters for Microwave Drying of Lactose Powder Using Bi–G Drying Correlation. Food Res. Int. 2004, 37, 1041–1047. DOI: 10.1016/j.foodres.2004.06.013.
  • Torki-Harchegani, M.; Ghanbarian, D.; Maghsoodi, V.; Moheb, A. Infrared Thin Layer Drying of Saffron (Crocus Sativus L.) Stigmas: Mass Transfer Parameters and Quality Assessment. Chin. J. Chem. Eng. 2017, 25, 426–432. DOI: 10.1016/j.cjche.2016.09.005.
  • Santos, S. D. J. L.; Silva, L. H. M. D.; Rodrigues, A. M. D. C. Prediction of Mass Transfer Parameters and Thermodynamic Properties Using the Refractance Window TM Technique for Drying of Yam (Dioscorea Trifida) Paste. Food Sci. Technol. 2022, 42, e67021. DOI: 10.1590/fst.67021.
  • Rajoriya, D.; Bhavya, M. L.; Hebbar, H. U. Impact of Process Parameters on Drying Behaviour, Mass Transfer and Quality Profile of Refractance Window Dried Banana Puree. LWT 2021, 145, 111330. DOI: 10.1016/j.lwt.2021.111330.
  • Mohammadi, I.; Tabatabaekoloor, R.; Motevali, A. Effect of Air Recirculation and Heat Pump on Mass Transfer and Energy Parameters in Drying of Kiwifruit Slices. Energy 2019, 170, 149–158. DOI: 10.1016/j.energy.2018.12.099.
  • Zhang, W.; Pan, Z.; Xiao, H.; Zheng, Z.; Chen, C.; Gao, Z. Pulsed Vacuum Drying (PVD) Technology Improves Drying Efficiency and Quality of Poria Cubes. Dry. Technol. 2018, 36, 908–921. DOI: 10.1080/07373937.2017.1362647.
  • Dincer, I.; Dost, S. An Analytical Model for Moisture Diffusion in Solid Objects During Drying. Dry. Technol. 1995, 13, 425–435. DOI: 10.1080/07373939508916962.
  • Jagota, S. K.; Dani, H. M. A New Colorimetric Technique for the Estimation of Vitamin C Using Folin Phenol Reagent. Anal. Biochem. 1982, 127, 178–182. DOI: 10.1016/0003-2697(82)90162-2.
  • Singleton, V. L.; Orthofer, R.; Lamuela-Raventós, R. M. Analysis of Total Phenols and other oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. In Methods in Enzymology, New York: Academic Press, Vol. 299, 1999, pp 152–178. DOI: 10.1016/S0076-6879(99)99017-1.
  • Tepe, Y.; Çebi, A.; Aydin, H. Acrylamide Content and Color Formation of Hazelnuts Roasted at Different Processing Temperatures and Times. Eur. Food Res. Technol. 2020, 246, 1543–1549. DOI: 10.1007/s00217-020-03508-w.
  • Kumar, A.; Malik, G.; Chandra, R.; Mulik, R. S. Bluish Emission of Economical Phosphor h-BN Nanoparticle Fabricated via Mixing Annealing Route Using Non-Toxic Precursor. J. Solid State Chem. 2020, 288, 121430. DOI: 10.1016/j.jssc.2020.121430.
  • Toba, K.; Yamamoto, H.; Yoshida, M. Crystallization of Cellulose Microfibrils in Wood Cell Wall by Repeated Dry-and-Wet Treatment, Using X-Ray Diffraction Technique. Cellulose 2013, 20, 633–643. DOI: 10.1007/s10570-012-9853-7.
  • Ju, H. Y.; El-Mashad, H. M.; Fang, X. M.; Pan, Z.; Xiao, H. W.; Liu, Y. H.; Gao, Z. J. Drying Characteristics and Modeling of Yam Slices under Different Relative Humidity Conditions. Dry. Technol. 2016, 34, 296–306. DOI: 10.1080/07373937.2015.1052082.
  • Gupta, R. K.; Sharma, A.; Kumar, P.; Vishwakarma, R. K.; Patil, R. T. Effect of Blanching on Thin Layer Drying Kinetics of Aonla (Emblica Officinalis) Shreds. J. Food Sci. Technol. 2014, 51, 1294–1301. DOI: 10.1007/s13197-012-0634-y.
  • Deng, L. Z.; Yang, X. H.; Mujumdar, A. S.; Zhao, J. H.; Wang, D.; Zhang, Q.; Wang, J.; Gao, Z. J.; Xiao, H. W. Red Pepper (Capsicum Annuum L.) Drying: Effects of Different Drying Methods on Drying Kinetics, Physicochemical Properties, Antioxidant Capacity, and Microstructure. Dry. Technol. 2018, 36, 893–907. DOI: 10.1080/07373937.2017.1361439.
  • Jalgaonkar, K.; Mahawar, M. K.; Vishwakarma, R. K.; Shivhare, U. S.; Nambi, V. E. Optimization of Process Condition for Preparation of Sapota Bar Using Refractance Window Drying Method. Dry. Technol. 2020, 38, 269–278. DOI: 10.1080/07373937.2018.1482314.
  • Ghalegi Ghalenoe, M.; Dehnad, D.; Jafari, S. M. Physicochemical and Nutritional Properties of Pomegranate Juice Powder Produced by Spray Drying. Dry. Technol. 2021, 39, 1941–1949. DOI: 10.1080/07373937.2021.1934691.
  • Li, D.; Chen, R.; Liu, J.; Liu, C.; Deng, L.; Chen, J. Characterizing and Alleviating the Browning of Choerospondias Axillaris Fruit Cake During Drying. Food Control 2022, 132, 108522. DOI: 10.1080/07373937.2021.1934691.
  • Lemus-Mondaca, R.; Miranda, M.; Grau, A. A.; Briones, V.; Villalobos, R.; Vega-Gálvez, A. Effect of Osmotic Pretreatment on Hot Air Drying Kinetics and Quality of Chilean Papaya (Carica Pubescens). Dry. Technol. 2009, 27, 1105–1115. DOI: 10.1080/07373930903221291.
  • Shewale, S. R.; Hebbar, H. U. Effect of Infrared Pretreatment on Low-Humidity Air Drying of Apple Slices. Dry. Technol. 2017, 35, 490–499. DOI: 10.1080/07373937.2016.1190935.
  • Skjerve, K. L. Microscopic Examination of Banana, Potato, Wheat and Oat: Influence of Pre-Digestive Processing on Cellularity and Structure. Master’s Thesis, Norwegian University of Life Sciences, Ås, Norway, 2020.
  • Segura-Ponce, L. A.; Soto-Pardo, V. A.; Guzmán-Meza, M. F. Characterization of Apples (Granny Smith) Dried in Industrial Equipment and the Relationship with Drying Mechanisms. Food Struct. 2019, 21, 100119. DOI: 10.1016/j.foostr.2019.100119.
  • Kamal, T.; Song, Y.; Tan, Z.; Zhu, B. W.; Tan, M. Effect of Hot-Air Oven Dehydration Process on Water Dynamics and Microstructure of Apple (Fuji) Cultivar Slices Assessed by LF-NMR and MRI. Dry. Technol. 2019, 37, 1974–1987. DOI: 10.1080/07373937.2018.1547312.
  • Ngamwonglumlert, L.; Devahastin, S. Microstructure and its Relationship with Quality and Storage Stability of Dried Foods. In Food Microstructure and its Relationship with Quality and Stability, Devahastin, S., Ed.; Woodhead Publishing, 2018, pp 139–159. DOI: 10.1016/B978-0-08-100764-8.00008-3.
  • Huang, X.; Liang, K. H.; Liu, Q.; Qiu, J.; Wang, J.; Zhu, H. Superfine Grinding Affects Physicochemical, Thermal and Structural Properties of Moringa Oleifera Leaf Powders. Indus. Crops Prod. 2020, 151, 112472. DOI: 10.1016/j.indcrop.2020.112472.
  • Huang, X.; Dou, J. Y.; Li, D.; Wang, L. J. Effects of Superfine Grinding on Properties of Sugar Beet Pulp Powders. LWT 2018, 87, 203–209. DOI: 10.1016/j.lwt.2017.08.067.
  • Manju, K. M.; Kumar, N.; Rekha, P. Effect of Fluidized‐Bed and Freeze‐Drying Techniques on Physicochemical, Nutritional, Thermal, and Structural Properties of Moringa Oleifera Flowers, Leaves, and Seeds. J. Food Process. Preserv. 2021, 45(9), e15719. DOI: 10.1111/jfpp.15719.
  • Raaf, A.; Suriaini, N.; Djafar, F.; Syamsuddin, Y.; Supardan, M. D. Effect of Drying Temperature on the Moisture Loss, Acidity and Characteristics of Amla Fruit. In IOP Conf. Ser: Earth Environ. Sci. 2021, 667, 012047. DOI: 10.1088/1755-1315/667/1/012047.
  • Wang, M.; Wu, P. Reconsideration of the Results of the Two Dimensional Correlation Infrared Spectroscopic Study on Water Diffusion Process in Poly (ɛ-Caprolactone) Matrix. Polymer 2011, 52, 769–777. DOI: 10.1016/j.polymer.2010.12.051.
  • Gallardo-Velázquez, T.; Osorio-Revilla, G.; Zuñiga-de Loa, M.; Rivera-Espinoza, Y. Application of FTIR-HATR Spectroscopy and Multivariate Analysis to the Quantification of Adulterants in Mexican Honeys. Food Res. Int. 2009, 42, 313–318. DOI: 10.1016/j.foodres.2008.11.010.
  • Tondi, G.; Petutschnigg, A. Middle Infrared (ATR FT-MIR) Characterization of Industrial Tannin Extracts. Indus. Crops Prod. 2015, 65, 422–428. DOI: 10.1016/j.indcrop.2014.11.005.
  • Oracz, J.; Zyzelewicz, D. In Vitro Antioxidant Activity and FTIR Characterization of High-Molecular Weight Melanoidin Fractions from Different Types of Cocoa Beans. Antioxidant 2019, 8(11), 560. DOI: 10.3390/antiox8110560.
  • Balasubramanian, P.; Sutar, P.; Durgawati, P. Development of a Novel Non-Water Infrared Refractance Window Drying Method for Malabar Spinach: Optimization of Process Parameters Using Drying Kinetics, Mass Transfer, and Powder Characterization. Dry. Technol. 2023, 1–16. DOI: 10.1080/07373937.2023.2169865.
  • Anonymous. IR spectrum table and chart. Online source culled from https://www.sigmaaldrich.com/IN/en/applications/analytical-chemistry (Accessed October 27, 2022).
  • Xiao, Q.; Tong, Q.; Lim, L. T. Drying Process of Pullulan Edible Films Forming Solutions Studied by ATR-FTIR with Two-Dimensional Correlation Spectroscopy. Food Chem. 2014, 150, 267–273. DOI: 10.1016/j.foodchem.2013.10.122.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.