Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 14
119
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Effect of the drying condition on the strength properties of Japanese larch board after vacuum heat treatment

&
Pages 2349-2356 | Received 06 May 2023, Accepted 24 Jul 2023, Published online: 01 Aug 2023

References

  • Hill, C. A. S. Thermal Modification of Wood. In Wood Modification: Chemical, Thermal and Other Processes; John Wiley & Sons: Chichester, 2006; pp 99–126. DOI:10.1002/0470021748.
  • Bekhta, P.; Niemz, P. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood. Holzforschung 2003, 57, 539–546. DOI: 10.1515/HF.2003.080.
  • Esteves, B. M.; Pereira, H. M. Wood Modification by Heat Treatment: A Review. BioRes 2008, 4, 370–404. DOI: 10.15376/biores.4.1.Esteves.
  • Hakkou, M.; Pétrissans, M.; Zoulalian, A.; Gérardin, P. Investigation of Wood Wettability Changes during Heat Treatment on the Basis of Chemical Analysis. Polym. Degrad. Stab. 2005, 89, 1–5. DOI: 10.1016/j.polymdegradstab.2004.10.017.
  • Shi, J. L.; Kocaefe, D.; Zhang, J. Mechanical Behaviour of Quebec Wood Species Heat-Treated Using ThermoWood Process. Eur. J. Wood Wood Prod. 2007, 65, 255–259. DOI: 10.1007/s00107-007-0173-9.
  • Tjeerdsma, B. F.; Militz, H. Chemical Changes in Hydrothermal Treated Wood: FTIR Analysis of Combined Hydrothermal and Dry Heat-Treated Wood. Eur. J. Wood Wood Prod. 2005, 63, 102–111. DOI: 10.1007/s00107-004-0532-8.
  • Korkut, D. S.; Guller, B. The Effects of Heat Treatment on Physical Properties and Surface Roughness of Red-Bud Maple (Acer trautvetteri Medw.) Wood. Bioresour. Technol. 2008, 99, 2846–2851. DOI: 10.1016/j.biortech.2007.06.043.
  • Gunduz, G.; Aydemir, D.; Korkut, S. The Effect of Heat Treatment on Some Mechanical Properties and Color Changes of Uludag Fir Wood. Drying Technol. 2010, 28, 249–255. DOI: 10.1080/07373930903530162.
  • Kocaefe, D.; Poncsak, S.; Tang, J.; Bouazara, M. Effect of Heat Treatment on the Mechanical Properties of North American Jack Pine: Thermogravimetric Study. J. Mater. Sci. 2010, 45, 681–687. DOI: 10.1007/s10853-009-3985-7.
  • Nuopponen, M.; Vuorinen, T.; Jämsä, S.; Viitaniemi, P. The Effects of a Heat Treatment on the Behaviour of Extractives in Softwood Studied by FTIR Spectroscopic Methods. Wood Sci. Technol. 2003, 37, 109–115. DOI: 10.1007/s00226-003-0178-4.
  • Santos, J. A. Mechanical Behaviour of Eucalyptus Wood Modified by Heat. Wood Sci. Technol. 2000, 34, 39–43. DOI: 10.1007/s002260050006.
  • Hill, C.; Altgen, M.; Rautkari, L. Thermal Modification of Wood—A Review: Chemical Changes and Hygroscopicity. J. Mater. Sci. 2021, 56, 6581–6614. DOI: 10.1007/s10853-020-05722-z.
  • Giudice, V. L.; Antov, P.; Koynov, D.; Kristak, L.; Lee, S. H.; Lubis, M. A. R.; Mecca, M.; Moretti, N.; Tiwari, R.; Todaro, L. Effect of Thermo-Vacuum Modification on Selected Chemical, Physical, and Mechanical Properties of Siberian Larch (Larix sibirica L.) Wood. Wood Mater. Sci. Eng. 2023, 1–10. DOI: 10.1080/17480272.2023.2212253.
  • Wang, Z.; Yang, X.; Sun, B.; Chai, Y.; Liu, J.; Cao, J. Effect of Vacuum Heat Treatment on the Chemical Composition of Larch Wood. BioResources 2016, 11, 5743–5750. DOI: 10.15376/biores.11.3.5743-5750.
  • Wang, Z.; Yang, X.; Sun, B.; Chai, Y.; Liu, J.; Cao, J. Effect of Thermo-Vacuum Treatment on the Color and Chemistry of Larch Wood. BioResources 2016, 11, 2349–2360. DOI: 10.15376/biores.11.1.2349-2360.
  • Boonstra, M. J.; Van Acker, J.; Tjeerdsma, B. F.; Kegel, E. V. Strength Properties of Thermally Modified Softwoods and Its Relation to Polymeric Structural Wood Constituents. Ann. For. Sci. 2007, 64, 679–690. DOI: 10.1051/forest:2007048.
  • Tjeerdsma, B. F.; Boonstra, M.; Pizzi, A.; Tekely, P.; Militz, H. Characterisation of Thermally Modified Wood: Molecular Reasons for Wood Performance Improvement. Holz Als Roh-Und Werkstoff 1998, 56, 149–153. DOI: 10.1007/s001070050287.
  • Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Salvo-Sepúlveda, L.; Salinas-Lira, C.; Llano-Ponte, R.; Ananías, R. A. Effect of Wood Drying and Heat Modification on Some Physical and Mechanical Properties of Radiata Pine. Drying Technol. 2018, 36, 537–544. DOI: 10.1080/07373937.2017.1342094.
  • Thiam, M.; Milota, M. R.; Leichti, R. J. Effect of High-Temperature Drying on Bending and Shear Strengths of Western Hemlock Lumber. For. Prod. J. 2002, 52, 64–68.
  • Bergman, R. Drying and Control of Moisture Content and Dimensional Changes. In Fpl-GTR 2021; Vol. 282; pp 13–11. Chapter 13.
  • Korkut, S.; Hiziroglu, S. Effect of Heat Treatment on Mechanical Properties of Hazelnut Wood (Corylus colurna L.). Mater. Des. 2009, 30, 1853–1858. DOI: 10.1016/j.matdes.2008.07.009.
  • Brosse, N.; El Hage, R.; Chaouch, M.; Pétrissans, M.; Dumarçay, S.; Gérardin, P. Investigation of the Chemical Modifications of Beech Wood Lignin during Heat Treatment. Polym. Degrad. Stab. 2010, 95, 1721–1726. DOI: 10.1016/j.polymdegradstab.2010.05.018.
  • Shen, Y.; Gao, Z.; Hou, X.; Chen, Z.; Jiang, J.; Sun, J. Spectral and Thermal Analysis of Eucalyptus Wood Drying at Different Temperature and Methods. Drying Technol. 2020, 38, 313–320. DOI: 10.1080/07373937.2019.1566742.
  • Lenth, C.; Sargent, R. Wood Material Behavior during Drying: Moisture-Dependent Tensile Stiffness and Strength of Radiata Pine at 70–150 C. Drying Technol. 2008, 26, 1112–1117. DOI: 10.1080/07373930802266082.
  • Salin, J. G. Drying of Liquid Water in Wood as Influenced by the Capillary Fiber Network. Drying Technol. 2008, 26, 560–567. DOI: 10.1080/07373930801944747.
  • Lee, C. J.; Hwang, J. W.; Oh, S. W. Effect of Combined Radio-Frequency/Vacuum-Press Drying on the Strength Properties of Japanese Larch Board. Drying Technol. 2022, 40, 2849–2856. DOI: 10.1080/07373937.2021.1967972.
  • Simpson, W. T. Dry kiln operator’s manual (No. 188). United States Government Printing 1991.
  • ISO 3130. Wood Tests Methods-Determination of moisture content for physical and mechanical tests, 1975.
  • ISO 3131. Wood Tests Methods-Determination of density for physical and mechanical tests, 1975.
  • ISO 3133. Wood Tests Methods-Determination of ultimate strength in static bending, 1975.
  • ISO 3787. Wood Tests Methods-Determination of ultimate stress in compression parallel to grain, 1976.
  • ISO 3345 Wood Tests Methods-Determination of ultimate tensile stress parallel to grain, 1975.
  • Yang, S. Y.; Han, Y.; Chang, Y. S.; Park, J. H.; Park, Y.; Chung, H.; Yeo, H. Classification of the Hot Air Heat Treatment Degree of Larch Wood Using a Multivariate Analysis of near-Infrared Spectroscopy. J. Wood Sci. 2018, 64, 220–225. DOI: 10.1007/s10086-018-1706-z.
  • Pockrandt, M.; Jebrane, M.; Cuccui, I.; Allegretti, O.; Uetimane, E.; Terziev, N. Industrial Thermowood® and Termovuoto Thermal Modification of Two Hardwoods from Mozambique. Holzforschung 2018, 72, 701–709. DOI: 10.1515/hf-2017-0153.
  • Sivrikaya, H.; Tesařová, D.; Jeřábková, E.; Can, A. Color Change and Emission of Volatile Organic Compounds from Scots Pine Exposed to Heat and Vacuum-Heat Treatment. J. Build. Eng. 2019, 26, 100918. DOI: 10.1016/j.jobe.2019.100918.
  • Won, K. R.; Hong, N. E.; Park, H. M.; Moon, S. O.; Byeon, H. S. Effects of Heating Temperature and Time on the Mechanical Properties of Heat-Treated Woods. J. Korean Wood Sci. Technol. 2015, 43, 168–176. DOI: 10.5658/WOOD.2015.43.2.168.
  • Li, X. P.; Wang, S. Q.; Du, G. B.; Wu, Z. K.; Meng, Y. J. Variation in Physical and Mechanical Properties of Hemp Stalk Fibers along Height of Stem. Ind. Crops Prod. 2013, 42, 344–348. DOI: 10.1016/j.indcrop.2012.05.043.
  • Sun, B.; Zhang, Y.; Su, Y.; Wang, X.; Chai, Y. Effect of Vacuum Heat Treatment on Larch Earlywood and Latewood Cell Wall Properties. Forests 2022, 14, 43. DOI: 10.3390/f14010043.
  • Wang, X.; Deng, Y.; Wang, S.; Min, C.; Meng, Y.; Pham, T.; Ying, Y. Evaluation of the Effects of Compression Combined with Heat Treatment by Nanoindentation (NI) of Poplar Cell Walls. Holzforschung 2014, 68, 167–173. DOI: 10.1515/hf-2013-0084.
  • Gindl, W.; Gupta, H. S.; Grunwald, C. Lignification of Spruce Tracheids Secondary Cell Wall Related to Longitudinal Hardness and Modulus of Elasticity Using Nano-Indentation. Can. J. Bot. 2002, 80, 1029–1033. DOI: 10.1139/b02-09.
  • Sivrikaya, H.; Hosseinpourpia, R.; Ahmed, S. A.; Adamopoulos, S. Vacuum-Heat Treatment of Scots Pine (Pinus Sylvestris L.) Wood Pretreated with Propanetriol. Wood Mater. Sci. Eng. 2022, 17, 328–336. DOI: 10.1080/17480272.2020.1861085.
  • Sun, B.; Wang, Z.; Liu, J. Changes of Chemical Properties and the Water Vapour Sorption of Eucalyptus Pellita Wood Thermally Modified in Vacuum. J. Wood Sci. 2017, 63, 133–139. DOI: 10.1007/s10086-016-1601-4.
  • Cloutier, A.; Fortin, Y. Wood Drying Modelling Based on the Water Potential Concept: Hysteresis Effects. Drying Technol. 1994, 12, 1793–1814. DOI: 10.1080/07373939408962207.
  • Wei, Y.; Zhang, P.; Liu, Y.; Chen, Y.; Gao, J.; Fan, Y. Kinetic Analysis of the Color of Larch Sapwood and Heartwood during Heat Treatment. Forests 2018, 9, 289. DOI: 10.3390/f9060289.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.