Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 14
142
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Thermal damages in spray drying: Particle size-dependent protein denaturation using phycocyanin as model substrate

&
Pages 2357-2370 | Received 03 May 2023, Accepted 28 Jul 2023, Published online: 10 Aug 2023

References

  • Anandharamakrishnan, C.; Rielly, C. D.; Stapley, A. G. F. Effects of Process Variables on the Denaturation of Whey Proteins during Spray Drying. Dry. Technol. 2007, 25, 799–807. DOI: 10.1080/07373930701370175.
  • Anandharamakrishnan, C.; Rielly, C. D.; Stapley, A. G. F. Loss of Solubility of α-Lactalbumin and β-Lactoglobulin during the Spray Drying of Whey Proteins. LWT - Food Sci. Technol. 2008, 41, 270–277. DOI: 10.1016/j.lwt.2007.03.004.
  • Fang, Y.; Rogers, S.; Selomulya, C.; Chen, X. D. Functionality of Milk Protein Concentrate: Effect of Spray Drying Temperature. Biochem. Eng. J. 2012, 62, 101–105. DOI: 10.1016/j.bej.2011.05.007.
  • Jaskulski, M.; Atuonwu, J. C.; Tran, T. T. H.; Stapley, A. G. F.; Tsotsas, E. Predictive CFD Modeling of Whey Protein Denaturation in Skim Milk Spray Drying Powder Production. Adv. Powder Technol. 2017, 28, 3140–3147. DOI: 10.1016/j.apt.2017.09.026.
  • Haque, M. A.; Putranto, A.; Aldred, P.; Chen, J.; Adhikari, B. Drying and Denaturation Kinetics of Whey Protein Isolate (WPI) during Convective Air Drying Process. Dry. Technol. 2013, 31, 1532–1544. DOI: 10.1080/07373937.2013.794832.
  • Samborska, K.; Witrowa-Rajchert, D.; Gonçalves, A. Spray-Drying of α-Amylase - The Effect of Process Variables on the Enzyme Inactivation. Dry. Technol. 2005, 23, 941–953. DOI: 10.1081/DRT-200054243.
  • Luyben, K. C.; Liou, J. K.; Bruin, S. Enzyme Degradation during Drying. Biotechnol. Bioeng. 1982, 24, 533–552. DOI: 10.1002/bit.260240303.
  • Sloth, J.; Bach, P.; Jensen, A. D.; Kiil, S. Evaluation Method for the Drying Performance of Enzyme Containing Formulations. Biochem. Eng. J. 2008, 40, 121–129. DOI: 10.1016/j.bej.2007.11.024.
  • Etzel, M. R.; Suen, S.-Y.; Halverson, S. L.; Budijono, S. Enzyme Inactivation in a Droplet Forming a Bubble during Drying. J. Food Eng. 1996, 27, 17–34. DOI: 10.1016/0260-8774(94)00078-N.
  • Yoshii, H.; Buche, F.; Takeuchi, N.; Terrol, C.; Ohgawara, M.; Furuta, T. Effects of Protein on Retention of ADH Enzyme Activity Encapsulated in Trehalose Matrices by Spray Drying. J. Food Eng. 2008, 87, 34–39. DOI: 10.1016/j.jfoodeng.2007.03.014.
  • Ståhl, K.; Claesson, M.; Lilliehorn, P.; Lindén, H.; Bäckström, K. The Effect of Process Variables on the Degradation and Physical Properties of Spray Dried Insulin Intended for Inhalation. Int. J. Pharm. 2002, 233, 227–237. DOI: 10.1016/s0378-5173(01)00945-0.
  • Burger, T. G.; Singh, I.; Mayfield, C.; Baumert, J. L.; Zhang, Y. The Impact of Spray Drying Conditions on the Physicochemical and Emulsification Properties of Pea Protein Isolate. LWT. 2022, 153, 112495. DOI: 10.1016/j.lwt.2021.112495.
  • Katekhong, W.; Charoenrein, S. Influence of Spray Drying Temperatures and Storage Conditions on Physical and Functional Properties of Dried Egg White. Dry. Technol. 2018, 36, 169–177. DOI: 10.1080/07373937.2017.1307218.
  • Ruprecht, N. A.; Bürger, J. V.; Kohlus, R. Using Phycocyanin as a Marker to Investigate Drying History and Structure Formation in Spray Drying. Dry. Technol. 2023, 1–14. DOI: 10.1080/07373937.2023.2193977.
  • Bazaria, B.; Kumar, P. Optimization of Spray Drying Parameters for Beetroot Juice Powder Using Response Surface Methodology (RSM). J. Saudi Soc. Agric. Sci. 2018, 17, 408–415. DOI: 10.1016/j.jssas.2016.09.007.
  • Ferrari, C. C.; Germer, S. P. M.; Aguirre, J. M. d Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Dry. Technol. 2012, 30, 154–163. DOI: 10.1080/07373937.2011.628429.
  • Cao, X.; Zhang, M.; Qian, H.; Mujumdar, A. S.; Wang, Z. Physicochemical and Nutraceutical Properties of Barley Grass Powder Microencapsulated by Spray Drying. Dry. Technol. 2017, 35, 1358–1367. DOI: 10.1080/07373937.2017.1332074.
  • Tun Norbrillinda, M.; Mahanom, H.; Nur Elyana, N.; Nur Intan Farina, S. Optimization of Spray Drying Process of Sargassum muticum Color Extract. Dry. Technol. 2016, 34, 1735–1744. DOI: 10.1080/07373937.2016.1204550.
  • Rodríguez-Hernández, G. R.; González-García, R.; Grajales-Lagunes, A.; Ruiz-Cabrera, M. A.; Abud-Archila, M. Spray-Drying of Cactus Pear Juice (Opuntia streptacantha): Effect on the Physicochemical Properties of Powder and Reconstituted Product. Dry. Technol. 2005, 23, 955–973. DOI: 10.1080/DRT-200054251.
  • Goula, A. M.; Adamopoulos, K. G. Retention of Ascorbic Acid during Drying of Tomato Halves and Tomato Pulp. Dry. Technol. 2006, 24, 57–64. DOI: 10.1080/07373930500538709.
  • Santana, A. A.; Kurozawa, L. E.; Oliveira, R. A. d.; Park, K. J. Influence of Process Conditions on the Physicochemical Properties of Pequi Powder Produced by Spray Drying. Dry. Technol. 2013, 31, 825–836. DOI: 10.1080/07373937.2013.766619.
  • Coumans, W. J.; Kerkhof, P. J.; Bruin, S. Theoretical and Practical Aspects of Aroma Retention in Spray Drying and Freeze Drying. Dry. Technol. 1994, 12, 99–149. DOI: 10.1080/07373939408959951.
  • Judson King, C. Spray Drying: Retention of Volatile Compounds Revisited. Dry. Technol. 1995, 13, 1221–1240. DOI: 10.1080/07373939508917018.
  • Reineccius, G. A.; Coulter, S. T. Flavor Retention during Drying. J. Dairy Sci. 1969, 52, 1219–1223. DOI: 10.3168/jds.S0022-0302(69)86728-7.
  • Jafari, S. M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation Efficiency of Food Flavours and Oils during Spray Drying. Dry. Technol. 2008, 26, 816–835. DOI: 10.1080/07373930802135972.
  • Reineccius, G. A. The Spray Drying of Food Flavors. Dry. Technol. 2004, 22, 1289–1324. DOI: 10.1081/DRT-120038731.
  • Zayas, J. F. Functionality of Proteins in Food; Springer: Berlin, Heidelberg, New York, 1997.
  • Nelson, D. L.; Lehninger, A. L.; Cox, M. M.; Osgood, M.; Ocorr, K. Lehninger Principles of Biochemistry; Macmillan: New York, 2008.
  • Tanford, C. Protein Denaturation. Adv. Protein Chem. 1968, 23, 121–282. DOI: 10.1016/S0065-3233(08)60401-5.
  • Sliwinski, E. L.; Lavrijsen, B. W. M.; Vollenbroek, J. M.; van der Stege, H. J.; van Boekel, M. A. J. S.; Wouters, J. T. M. Effects of Spray Drying on Physicochemical Properties of Milk Protein-Stabilised Emulsions. Colloids Surf. B 2003, 31, 219–229. DOI: 10.1016/S0927-7765(03)00142-5.
  • Claussen, I. C.; Str⊘Mmen, I.; Egelandsdal, B.; Strætkvern, K. O. Effects of Drying Methods on Functionality of a Native Potato Protein Concentrate. Dry. Technol. 2007, 25, 1091–1098. DOI: 10.1080/07373930701396444.
  • Schmitz-Schug, I.; Foerst, P.; Kulozik, U. Impact of the Spray Drying Conditions and Residence Time Distribution on Lysine Loss in Spray Dried Infant Formula. Dairy Sci. Technol. 2013, 93, 443–462. DOI: 10.1007/s13594-013-0115-8.
  • Schmitz-Schug, I.; Kulozik, U.; Foerst, P. Modeling Spray Drying of Dairy Products – Impact of Drying Kinetics, Reaction Kinetics and Spray Drying Conditions on Lysine Loss. Chem. Eng. Sci. 2016, 141, 315–329. DOI: 10.1016/j.ces.2015.11.008.
  • Daemen, A. L. H.; van der Stege, H. J. The destruction of enzymes and bacteria during the spray-drying of milk and whey. 2. The effect of the drying conditions. Netherlands Milk Dairy J. 1982, 36, 211–229.
  • Atuonwu, J. C.; Ray, J.; Stapley, A. G. A Kinetic Model for Whey Protein Denaturation at Different Moisture Contents and Temperatures. Int. Dairy J. 2017, 75, 41–50. DOI: 10.1016/j.idairyj.2017.07.002.
  • Meerdink, G.; Van’t Riek, K. Predicition of Product Quality during Spray Drying. Food Bioprod. Process. 1995, 73, 165–170.
  • Perdana, J.; Fox, M. B.; Schutyser, M. A. I.; Boom, R. M. Enzyme Inactivation Kinetics: Coupled Effects of Temperature and Moisture Content. Food Chem. 2012, 133, 116–123. DOI: 10.1016/j.foodchem.2011.12.080.
  • Mallamace, F.; Corsaro, C.; Mallamace, D.; Baglioni, P.; Stanley, H. E.; Chen, S.-H. A Possible Role of Water in the Protein Folding Process. J. Phys. Chem. B 2011, 115, 14280–14294. DOI: 10.1021/jp205285t.
  • Vehring, R.; Foss, W. R.; Lechuga-Ballesteros, D. Particle Formation in Spray Drying. J. Aerosol. Sci. 2007, 38, 728–746. DOI: 10.1016/j.jaerosci.2007.04.005.
  • Ruprecht, N. A.; Köhler, A.; Kohlus, R. A New Method for Continuous Measurement of Residence Time Distribution in Spray Drying. Dry. Technol. 2022, 40, 2645–2654. DOI: 10.1080/07373937.2021.1951287.
  • Lefebvre, A. H.; McDonell, V. G. Atomization and Sprays; CRC Press: Boca Raton, FL, 2017.
  • Chang, Y. I.; Scire, J.; Jacobs, B. Effect of Particle Size and Microstructure Properties on Encapsulated Orange Oil. In Flavor Encapsulation; Risch, S. J., Reineccius, G. A., Eds.; American Chemical Society: Washington, DC, 1988; pp 87–102
  • Finney, J.; Buffo, R.; Reineccius, G. A. Effects of Type of Atomization and Processing Temperatures on the Physical Properties and Stability of Spray-Dried Flavors. J Food Sci. 2002, 67, 1108–1114. DOI: 10.1111/j.1365-2621.2002.tb09461.x.
  • Soottitantawat, A.; Bigeard, F.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, P. Influence of Emulsion and Powder Size on the Stability of Encapsulated d-Limonene by Spray Drying. Innov. Food Sci. Emerg. Technol. 2005, 6, 107–114. DOI: 10.1016/j.ifset.2004.09.003.
  • Wijlhuizen, A. E.; Kerkhof, P. J. A. M.; Bruin, S. Theoretical Study of the Inactivation of Phosphatase during Spray Drying of Skim-Milk. Chem. Eng. Sci. 1979, 34, 651–660. DOI: 10.1016/0009-2509(79)85110-6.
  • Meerdink, G.; Van’t Riet, K. Inactivation of Thermostable α-Amylase during Drying. J. Food Eng. 1991, 14, 83–102. DOI: 10.1016/0260-8774(91)90001-9.
  • Yamamoto, S.; Sano, Y. Drying of Enzymes: Enzyme Retention during Drying of a Single Droplet. Chem. Eng. Sci. 1992, 47, 177–183. DOI: 10.1016/0009-2509(92)80211-T.
  • Pramudita, D.; Humjaa, S.; Tsotsas, E. Droplet Drying and Whey Protein Denaturation in Pulsed Gas flow - A Modeling Study. J. Food Eng. 2022, 321, 110959. DOI: 10.1016/j.jfoodeng.2022.110959.
  • Böcker, L.; Ortmann, S.; Surber, J.; Leeb, E.; Reineke, K.; Mathys, A. Biphasic Short Time Heat Degradation of the Blue Microalgae Protein Phycocyanin from Arthrospira platensis. Innov. Food Sci. Emerg. Technol. 2019, 52, 116–121. DOI: 10.1016/j.ifset.2018.11.007.
  • Antelo, F. S.; Costa, J. A.; Kalil, S. J. Thermal Degradation Kinetics of the Phycocyanin from Spirulina platensis. Biochem. Eng. J. 2008, 41, 43–47. DOI: 10.1016/j.bej.2008.03.012.
  • Buecker, S.; Grossmann, L.; Loeffler, M.; Leeb, E.; Weiss, J. Thermal and Acidic Denaturation of Phycocyanin from Arthrospira platensis: Effects of Complexation with λ-Carrageenan on Blue Color Stability. Food Chem. 2022, 380, 132157. DOI: 10.1016/j.foodchem.2022.132157.
  • Böcker, L.; Hostettler, T.; Diener, M.; Eder, S.; Demuth, T.; Adamcik, J.; Reineke, K.; Leeb, E.; Nyström, L.; Mathys, A. Time-Temperature-Resolved Functional and Structural Changes of Phycocyanin Extracted from Arthrospira platensis/Spirulina. Food Chem. 2020, 316, 126374. DOI: 10.1016/j.foodchem.2020.126374.
  • Stieß, M. Mechanische Verfahrenstechnik - Partikeltechnologie 1, 3rd ed.; Springer Berlin Heidelberg: Berlin, Heidelberg, 2009.
  • Yoshikawa, N.; Belay, A. Single-Laboratory Validation of a Method for the Determination of c-Phycocyanin and Allophycocyanin in Spirulina (Arthrospira) Supplements and Raw Materials by Spectrophotometry. J. AOAC Int. 2008, 91, 524–529. DOI: 10.1093/jaoac/91.3.524.
  • Walzel, P. Influence of the Spray Method on Product Quality and Morphology in Spray Drying. Chem. Eng. Technol. 2011, 34, 1039–1048. DOI: 10.1002/ceat.201100051.
  • Schmitz-Schug, I.; Kulozik, U.; Foerst, P. Reaction Kinetics of Lysine Loss in a Model Dairy Formulation as Related to the Physical State. Food Bioprocess Technol. 2014, 7, 877–886. DOI: 10.1007/s11947-013-1119-3.
  • Fujii, S.; Yoshimoto, N.; Yamamoto, S. Enzyme Retention during Drying of Amorphous Sugar and Carbohydrate Solutions: Diffusion Model Revisited. Dry. Technol. 2013, 31, 1525–1531. DOI: 10.1080/07373937.2013.810639.
  • Ruprecht, N. A.; Liebig, L. K.; Hajare, V.; Kohlus, R. Thermal Damages in Spray drying- Effect of Particle Size and Residence Time Ratio. Presented at the Proceedings of the 22nd International Drying Symposium on Drying Technology - IDS ‘22; Yagoobi, J., Mujumdar, A. S., Devahastin, S., Eds.; Worcester Polytechnic Institute - Gordon Library: Worcester, Massachusetts, 2022–2022.
  • Ruprecht, N. A.; Senge, J. M.; Teichmann, H. S.; Kohlus, R. Modelling and Measurement of the Particle Size Dependent Residence Time Distribution in Spray Drying; Comsol Conference, Cambridge, England 2019.
  • Williams, M. L.; Landel, R. F.; Ferry, J. D. The Temperature Dependence of Relaxation Mechanisms in Amorphous Polymers and Other Glass-Forming Liquids. J. Am. Chem. Soc. 1955, 77, 3701–3707. DOI: 10.1021/ja01619a008.
  • Walton, D. E. The Morphology of Spray-Dried Particles a Qualitative View. Dry. Technol. 2000, 18, 1943–1986. DOI: 10.1080/07373930008917822.
  • Ruprecht, N. A.; Teichmann, H.; Kohlus, R. A Particle Shape-Based Segmentation Method to Characterize Spray Dried Materials by X-Ray Microtomography. Particuology 2023, 81, 119–127. DOI: 10.1016/j.partic.2022.12.017.
  • Geldart, D. Types of Gas Fluidization. Powder Technol. 1973, 7, 285–292. DOI: 10.1016/0032-5910(73)80037-3.
  • Fröhlich, J. A.; Ruprecht, N. A.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Effect of Powder Addition on Particle Coalescence. Powder Technol. 2020, 374, 223–232. DOI: 10.1016/j.powtec.2020.07.009.
  • Fröhlich, J. A.; Raiber, T. V.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Influence of Total Solid Content on Agglomerate Properties. Powder Technol. 2021, 390, 292–302. DOI: 10.1016/j.powtec.2021.05.094.
  • Fröhlich, J. A.; Spiess, M.; Hinrichs, J.; Kohlus, R. Nozzle Zone Agglomeration in Spray Dryers: Process Dependency of the Fines Mass Flow and Its Importance for Agglomerate Formation. Dry. Technol. 2023, 41, 707–719. DOI: 10.1080/07373937.2022.2111439.
  • Fröhlich, J. A.; Ruprecht, N. A.; Hinrichs, J.; Kohlus, R. Nozzle zone agglomeration in spray dryers: Determination of the agglomeration efficiency in the fines return by means of agglomerate properties and residence time distribution. Dry. Technol. 2023, 1–17. DOI: 10.1080/07373937.2023.2203224.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.