Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Convective drying of iron ore fines: A CFD model validated for different air temperatures and air velocities

, , , &
Pages 2431-2446 | Received 20 Jun 2023, Accepted 22 Aug 2023, Published online: 30 Aug 2023

References

  • United Nations Conference on Trade and Development. Review of Maritime Transport 2022; 2022.
  • International Maritime Organization, Amendments (05-19) to the International Maritime Solid Bulk Cargoes (IMSBC) Code (on 1 January 2021) (MSC101/24Add.3), 2019.
  • Mujumdar, A. S. Chapter 42 Drying in Mineral Processing. In Handbook of Industrial Drying; Mujumdar, A. S., Ed.; CRC Press: Boca Raton, 2015; pp 861–866.
  • Munro, M. C.; Mohajerani, A. Bulk Cargo Liquefaction Incidents during Marine Transportation and Possible Causes. Ocean Eng 2017, 141, 125–142. DOI: 10.1016/j.oceaneng.2017.06.010.
  • Munro, M. C.; Mohajerani, A. Liquefaction Incidents of Mineral Cargoes on Board Bulk Carriers. Adv. Mater. Sci. Eng 2016, 2016, 1–20. DOI: 10.1155/2016/5219474.
  • Furtado, M. d. C.; Silva, A. J. C. d.; Fontana, A.; dos, R. L.; Mesquita, A. L. A.; Junior, R. M. d. S. Numerical and Experimental Study on the Drying Process of Iron Ore in Wagons. Dry. Technol. 2023, 41, 1783–1802. DOI: 10.1080/07373937.2023.2185629.
  • de Almeida Leão, R. X.; Silva Amorim, L.; Ferreira Martins, M.; Belich Junior, H.; Sarcinelli, E.; Amarante Mesquita, A. L. A Model for Velocity Streamlines of Airborne Dust Particles Spreading Caused by Free-Falling Bulk Materials. Powder Technol 2020, 371, 190–194. DOI: 10.1016/j.powtec.2020.05.087.
  • Souza Pinto, T. C.; Costa, M.; de A.; Leal Filho, L.; de, S.; Silva, D.; da, F. S. e. Process for ore moisture reducion in conveyor belts and transfer chutes. US 2017/0115059 A1, Apr 27, 2017.
  • Souza Pinto, T. C.; Souza, A. S.; Batista, J. N. M.; Sarkis, A. M.; Leal Filho, L. S.; Pádua, T. F.; Béttega, R. Characterization and Drying Kinetics of Iron Ore Pellet Feed and Sinter Feed. Dry. Technol. 2021, 39, 1359–1370. DOI: 10.1080/07373937.2020.1747073.
  • Souza, A. S.; Souza, P.; Sarkis, A. M.; Pádua, T. F.; Béttega, R. Energy Analysis of the Convective Drying of Iron Ore Fines. CI&CEQ 2023, 29, 189–200. DOI: 10.2298/CICEQ220208026S.
  • Chaedir, B. A.; Kurnia, J. C.; Sasmito, A. P.; Mujumdar, A. S. Advances in Dewatering and Drying in Mineral Processing. Dry. Technol 2021, 39, 1667–1684. DOI: 10.1080/07373937.2021.1907754.
  • Sass, A. Simulation of Heat-Transfer Phenomena in a Rotary Kiln. Ind. Eng. Chem. Proc. Des. Dev 1968, 7, 319–320. DOI: 10.1021/i260026a031.
  • Ghoshdastidar, P. S.; Bhargava, G.; Chhabra, R. P. Computer Simulation of Heat Transfer During Drying and Preheating of Wet Iron Ore in a Rotary Kiln. Dry. Technol. 2002, 20, 19–35. DOI: 10.1081/DRT-120001364.
  • Namkung, W.; Cho, M. Pneumatic Drying of Iron Ore Particles in a Vertical Tube. Dry. Technol. 2004, 22, 877–891. DOI: 10.1081/DRT-120034268.
  • Sharma, R.; Nimaje, D. S. Effect of Open-Air and Hot-Air Oven Drying on Interparticle Bonding of Iron Ore Agglomerates. Dry. Technol. 2021, 39, 348–357. DOI: 10.1080/07373937.2020.1863423.
  • Ljung, A. L.; Staffan Lundström, T.; Daniel Marjavaara, B.; Tano, K. Convective Drying of an Individual Iron Ore Pellet - Analysis with CFD. Int. J. Heat Mass Transf 2011, 54, 3882–3890. DOI: 10.1016/j.ijheatmasstransfer.2011.04.040.
  • Ljung, A.-L.; Lundström, T. S.; Marjavaara, B. D.; Tano, K. Influence of Air Humidity on Drying of Individual Iron Ore Pellets. Dry. Technol. 2011, 29, 1101–1111. DOI: 10.1080/07373937.2011.571355.
  • Ljung, A. L.; Lundström, T. S. Heat and Mass Transfer Boundary Conditions at the Surface of a Heated Sessile Droplet. Heat Mass Transfer 2017, 53, 3581–3591. DOI: 10.1007/s00231-017-2087-3.
  • Athayde, M.; Cota, M.; Covcevich, M. Iron Ore Pellet Drying Assisted by Microwave : A Kinetic Evaluation. Miner. Process. Extr. Metall. Rev 2018, 39, 266–275. DOI: 10.1080/08827508.2017.1423295.
  • Abazarpoor, A.; Halali, M.; Hejazi, R.; Saghaeian, M. HPGR Effect on the Particle Size and Shape of Iron Ore Pellet Feed Using Response Surface Methodology. Miner. Process. Extr. Metall 2018, 127, 40–48. DOI: 10.1080/03719553.2017.1284414.
  • Meyer, K. Pelletizing of Iron Ores; Springer-Verlag: Heidelberg, 1980.
  • ITV. ITV’s researchers successfully test technology to reduce iron ore moisture. https://www.itv.org/en/imprensa/itvs-researchers-successfully-test-technology-to-reduce-iron-ore-moisture/.
  • Jamaleddine, T. J.; Ray, M. B. Application of Computational Fluid Dynamics for Simulation of Drying Processes: A Review. Dry. Technol. 2010, 28, 120–154. DOI: 10.1080/07373930903517458.
  • Jang, J.; Arastoopour, H. CFD Simulation of a Pharmaceutical Bubbling Bed Drying Process at Three Different Scales. Powder Technol. 2014, 263, 14–25. DOI: 10.1016/j.powtec.2014.04.054.
  • Ranjbaran, M.; Zare, D. CFD Modeling of Microwave-Assisted Fluidized Bed Drying of Moist Particles Using Two-Fluid Model. Dry. Technol. 2012, 30, 362–376. DOI: 10.1080/07373937.2011.642913.
  • Da Silva, F. R. G. B.; De Souza, M.; Da Costa, A. M. d. S.; Jorge, L. M. d. M.; Paraíso, P. R. Experimental and Numerical Analysis of Soybean Meal Drying in Fluidized Bed. Powder Technol. 2012, 229, 61–70. DOI: 10.1016/j.powtec.2012.06.008.
  • Wang, H. G.; Yang, W. Q.; Senior, P.; Raghavan, R. S.; Duncan, S. R. Investigation of Batch Fluidized-Bed Drying by Mathematical Modeling, CFD Simulation and ECT Measurement. AIChE J. 2008, 54, 427–444. DOI: 10.1002/aic.
  • Tu, Q.; Ma, Z.; Wang, H. Investigation of Wet Particle Drying Process in a Fluidized Bed Dryer by CFD Simulation and Experimental Measurement. Chem. Eng. J 2023, 452, 139200. DOI: 10.1016/j.cej.2022.139200.
  • Cârlescu, P. M.; Arsenoaia, V.; Roşca, R.; Ţenu, I. CFD Simulation of Heat and Mass Transfer during Apricots Drying. LWT - Food Sci. Technol. 2017, 85, 479–486. DOI: 10.1016/j.lwt.2017.03.015.
  • Lan, B.; Zhao, P.; Xu, J.; Zhao, B.; Zhai, M.; Wang, J. CFD-DEM-IBM Simulation of Particle Drying Processes in Gas-Fluidized Beds. Chem. Eng. Sci. 2022, 255, 117653. DOI: 10.1016/j.ces.2022.117653.
  • Sutkar, V. S.; Deen, N. G.; Patil, A. V.; Salikov, V.; Antonyuk, S.; Heinrich, S.; Kuipers, J. A. M. CFD-DEM Model for Coupled Heat and Mass Transfer in a Spout Fluidized Bed with Liquid Injection. Chem. Eng. J. 2016, 288, 185–197. DOI: 10.1016/j.cej.2015.11.044.
  • Lun, C. K. K.; Savage, S. B.; Jeffrey, D. J.; Chepurniy, N. Kinetic Theories for Granular Flow: Inelastic Particles in Coutte Flow and Slightly Inelastic Particles in General Flow Field. J. Fluid Mech. 1984, 140, 223–256. DOI: 10.1017/S0022112084000586.
  • Souza, A. S.; Freire, J. T.; Béttega, R. Computational Fluid Dynamics Evaluation of the Influence of Cone Geometry on Solids Circulation in Spouted Beds. Ind. Eng. Chem. Res. 2018, 57, 13876–13888. DOI: 10.1021/acs.iecr.8b03505.
  • Béttega, R.; da Rosa, C. A.; Corrêa, R. G.; Freire, J. T. Fluid Dynamic Study of a Semicylindrical Spouted Bed: Evaluation of the Shear Stress Effects in the Flat Wall Region Using Computational Fluid Dynamics. Ind. Eng. Chem. Res 2009, 48, 11181–11188. DOI: 10.1021/ie900973x.
  • Lopes, G. C.; Rosa, L. M.; Mori, M.; Nunhez, J. R.; Martignoni, W. P. Three-Dimensional Modeling of Fluid Catalytic Cracking Industrial Riser Flow and Reactions. Comput. Chem. Eng. 2011, 35, 2159–2168. DOI: 10.1016/j.compchemeng.2010.12.014.
  • Zehner, P.; Schlünder, E. U. Wärmeleitfähigkeit Von Schüttungen Bei Mässigen Temperaturen. Chemie Ing. Techn 1970, 42, 933–941. DOI: 10.1002/cite.330421408.
  • Kuipers, J. A. M.; Prins, W.; Swaaij, W. P. M. Numerical Calculation of Wall-to-Bed Heat Transfer Coefficients in Gas-Fluidized Beds. AIChE J 1992, 38, 1079–1091. DOI: 10.1002/aic.690380711.
  • Okazaki, J. H.; Souza, A. S.; Souza Pinto, T. C.; Béttega, R.; Pádua, T. F. Drying of Brazilian Iron Ore in Spherical Pellets. In Proceedings of the 22nd International Drying Symposium; Worcester, USA, 2022.
  • Welty, J. R.; Wicks, C. E.; Wilson, R. E.; Rorrer, G. L. Fundamentals of Momentum, Heat, and Mass Transfer, 5th ed.; Wiley: New York, 2008.
  • Gunn, D. J. Transfer of Heat or Mass to Particles in Fixed and Fluidised Beds. Int. J. Heat Mass Transf. 1978, 21, 467–476. DOI: 10.1016/0017-9310(78)90080-7.
  • Sanghi, A.; Ambrose, R. P. K.; Maier, D. CFD Simulation of Corn Drying in a Natural Convection Solar Dryer. Dry. Technol 2018, 36, 859–870. DOI: 10.1080/07373937.2017.1359622.
  • Rosli, M. I.; Nasir, A. M.; Im, A.; Takriff, M. S.; Chern, L. P. Simulation of a Fluidized Bed Dryer for the Drying of Sago Waste. Energies 2018, 11, 2383. DOI: 10.3390/en11092383.
  • Lewis, W. K. The Rate of Drying of Solid Materials. J. Ind. Eng. Chem 1921, 13, 427–432. DOI: 10.1021/ie50137a021.
  • Krokida, M. K.; Foundoukidis, E.; Maroulis, Z. Drying Constant: Literature Data Compilation for Foodstuffs. J. Food Eng 2004, 61, 321–330. DOI: 10.1016/S0260-8774(03)00136-5.
  • AOAC. Official Methods of Analysis of the Association of Official Analytical Chemists, 17th ed.; AOAC International: Maryland, 2002.
  • Box, G. E. P.; Hunter, J. S.; Hunter, W. G. Statistics for Experimenters: Design, Innovation and Discovery, 2nd ed.; John Wiley & Sons: New Jersey, 2005.
  • Antony, J. Design of Experiments for Engineers and Scientists, 2nd ed.; Elsevier: London, 2014. DOI: 10.1016/C2012-0-03558-2.
  • Stern, F.; Wilson, R. V.; Coleman, H. W.; Paterson, E. G. Comprehensive Approach to Verification and Validation of CFD Simulations - Part 1: Methodology and Procedures. J. Fluids Eng. 2001, 123, 793–802. DOI: 10.1115/1.1412235.
  • Ding, J.; Gidaspow, D. A Bubbling Fluidization Model Using Kinetic Theory of Granular Flow. AIChE J. 1990, 36, 523–538. DOI: 10.1002/aic.690360404.
  • Gidaspow, D.; Bezburuah, R.; Ding, J. Hydrodynamics of Circulating Fluidized Beds, Kinetic Theory Approach, Fluidization VII. In 7th Engineering Foundation Conference on Fluidization; Foundation, E, Ed.; New York, 1992, pp 75–82.
  • Ogawa, S.; Umemura, A.; Oshima, N. On the Equations of Fully Fluidized Granular Materials. J. Appl. Mathematics and Phys. (ZAMP) 1980, 31, 483–493. DOI: 10.1007/BF01590859.
  • Schaeffer, D. G. Instability in the Evolution Equations Describing Incompressible Granular Flow. J. Differ. Equ 1987, 66, 19–50. DOI: 10.1016/0022-0396(87)90038-6.
  • Waples, D. W.; Waples, J. S. A Review and Evaluation of Specific Heat Capacities of Rocks, Minerals, and Subsurface Fluids. Part 1: Minerals and Nonporous Rocks. Nat. Resour. Res. 2004, 13, 97–122. DOI: 10.1023/B:NARR.0000032647.41046.e7.
  • Cermak, V.; Rybach, L. Thermal properties: Thermal Conductivity and Specific Heat of Minerals and Rocks. In Landolt-Börnstein Zahlenwerte und Funktionen aus Naturwissenschaften und Technik, Neue Serie; G. Angenester, Ed.; Springer Verlag: Berlin, Heidelberg and New York, 1982; pp 305–343.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.