Publication Cover
Drying Technology
An International Journal
Volume 41, 2023 - Issue 15
148
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Temperature control for microwave vacuum drying of raspberries

, , , , , , , ORCID Icon & show all
Pages 2464-2475 | Received 18 Feb 2023, Accepted 27 Aug 2023, Published online: 12 Sep 2023

References

  • Mullen, W.; McGinn, J.; Lean, M. E. J.; MacLean, M. R.; Gardner, P.; Duthie, G. G.; Yokota, T.; Crozier, A. Ellagitannins, Flavonoids, and Other Phenolics in Red Raspberries and Their Contribution to Antioxidant Capacity and Vasorelaxation Properties. J. Agric. Food Chem. 2002, 50, 5191–5196. DOI: 10.1021/jf020140n.
  • Paredes-Lopez, O.; Cervantes-Ceja, M. L.; Vigna-Perez, M.; Hernández-Pérez, T. Berries: Improving Human Health and Healthy Aging, and Promoting Quality life-A Review. Plant Foods Hum. Nutr. 2010, 65, 299–308. DOI: 10.1007/s11130-010-0177-1.
  • Zhang, X. H. Q.; Fan, J. Y.; Xiao, D.; Edirisinghe, I.; Burton-Freeman, B. M.; Sandhu, A. K. Pharmacokinetic Evaluation of Red Raspberry (Poly)Phenols from Two Doses and Association with Metabolic Indexes in Adults with Prediabetes and Insulin Resistance. J. Agric. Food Chem. 2021, 69, 9238–9248. DOI: 10.1021/acs.jafc.1c02404.
  • Skrovankova, S.; Sumczynski, D.; Mlcek, J.; Jurikova, T.; Sochor, J. Bioactive Compounds and Antioxidant Activity in Different Types of Berries. Int. J. Mol. Sci. 2015, 16, 24673–24706. DOI: 10.3390/ijms161024673.
  • Lu, Y.-H.; Chen, J.; Wei, D.-Z.; Wang, Z.-T.; Tao, X.-Y. Tyrosinase Inhibitory Effect and Inhibitory Mechanism of Tiliroside from Raspberry. J. Enzyme Inhib. Med. Chem. 2009, 24, 1154–1160. DOI: 10.1080/14756360802694252.
  • Bustos, M. C.; Rocha-Parra, D.; Sampedro, I. R.; Pascual-Teresa, S. D.; León, A. E. The Influence of Different Air-Drying Conditions on Bioactive Compounds and Antioxidant Activity of Berries. J. Agric. Food Chem. 2018, 66, 2714–2723. DOI: 10.1021/acs.jafc.7b05395.
  • Ozcelik, M.; Ambros, S.; Morais, S.; Kulozik, U. Storage Stability of Dried Raspberry Foam as a Snack Product: Effect of Foam Structure and Microwave-Assisted Freeze Drying on the Stability of Plant Bioactives and Ascorbic Acid. J. Food Eng. 2020, 270, 109779. DOI: 10.1016/j.jfoodeng.2019.109779.
  • Mousakhani-Ganjeh, A.; Amiri, A.; Nasrollahzadeh, F.; Wiktor, A.; Nilghaz, A.; Pratap-Singh, A.; Mousavi Khaneghah, A. Electrobased Technologies in Food Drying-a Comprehensive Review. LWT-Food Sci. Technol. 2021, 145, 111315., DOI: 10.1016/j.lwt.2021.111315.
  • Monteiro, R. L.; Moraes, J.; Domingos, J. D.; Carciofi, B.; Laurindo, J. B. (a) Evolution of the Physicochemical Properties of Oil-Free Sweet Potato Chips during Microwave Vacuum Drying. Innov. Food Sci. Emerg. 2020, 63, 102317. DOI: 10.1016/j.ifset.2020.102317.
  • Liu, Z. L.; Staniszewska, I.; Zielinska, D.; Zhou, Y. H.; Zielińska, M. Combined Hot Air and Microwave-Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties. Food Bioprocess Technol. 2020, 2020, 848–1856.
  • Monteiro, R. L.; Gomide, A. I.; Link, J. V.; Carciofi, B.; Laurindo, J. B. (b) Microwave Vacuum Drying of Foods with Temperature Control by Power Modulation. Innov. Food Sci. Emerg. 2020, 65, 102473. DOI: 10.1016/j.ifset.2020.102473.
  • Cao, X.; Zhang, M.; Fang, Z.; Mujumdar, A. S.; Jiang, H.; Qian, H.; Ai, H. Drying Kinetics and Product Quality of Green Soybean under Different Microwave Drying Methods. Dry. Technol. 2017, 35, 240–248. DOI: 10.1080/07373937.2016.1170698.
  • Wang, J.; Bai, T.-Y.; Wang, D.; Fang, X.-M.; Xue, L.-Y.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. Pulsed Vacuum Drying of Chinese Ginger (Zingiber Officinale Roscoe) Slices: Effects on Drying Characteristics, Rehydration Ratio, Water Holding Capacity, and Microstructure. Dry. Technol. 2019, 37, 301–311. DOI: 10.1080/07373937.2017.1423325.
  • Ma, X. T.; Luo, G. Y.; Li, Z. F.; Raghavan, G. S. V.; Chen, H. Y.; Song, C. F. Microwave Power Control Scheme for Potatoes Based on Dielectric Loss Factor Feedback. J. Food Eng. 2021, 288, 110134. DOI: 10.1016/j.jfoodeng.2020.110134.
  • Rubinskiene, M.; Viskelis, P.; Jasutiene, I.; Viskeliene, R.; Bobinas, C. Impact of Various Factors on the Composition and Stability of Black Currant Anthocyanins. Food Res. Int. 2005, 38, 867–871. DOI: 10.1016/j.foodres.2005.02.027.
  • Zhou, Y.-H.; Staniszewska, I.; Liu, Z.-L.; Zielinska, D.; Xiao, H.-W.; Pan, Z.; Nowak, K. W.; Zielinska, M. Microwave-Vacuum-Assisted Drying of Pretreated Cranberries: Drying Kinetics, Bioactive Compounds and Antioxidant Activity. LWT-Food Sci. Technol. 2021, 146, 111464. DOI: 10.1016/j.lwt.2021.111464.
  • Gull, A.; Bhat, N.; Wani, S. M.; Masoodi, F. A.; Amin, T.; Ganai, S. A. Shelf Life Extension of Apricot Fruit by Application of Nanochitosan Emulsion Coatings Containing Pomegranate Peel Extract. Food Chem. 2021, 349, 129149. DOI: 10.1016/j.foodchem.2021.129149.
  • Jia, Z.; Tang, M.; Wu, J. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxides Radical. Food Chem. 1998, 64, 555–559.
  • Yu, Y. S.; Xu, Y. J.; Wu, J. J.; Xiao, G. S.; Fu, M. Q.; Zhang, Y. S. Effect of Ultrahigh Pressure Homogenization Processing on Phenolic Compounds, Antioxidant Capacity and anti-Glucosidase of Mulberry Juice. Food Chem. 2014, 153, 114–120. DOI: 10.1016/j.foodchem.2013.12.038.
  • Li, Z. F.; Raghavan, G. S. V.; Orsat, V. Temperature and Power Control in Microwave Drying. J. Food Eng. 2010, 97, 478–483. DOI: 10.1016/j.jfoodeng.2009.11.004.
  • Huang, L.; Chen, H.; Zhang, M.; Liu, W.; Mujumdar, A. S.; Yu, D. Simulation of Temperature During Vacuum Microwave Drying of Mixed Potato and Apple Slices. Dry. Technol. 2022, 40, 3177–3185. DOI: 10.1080/07373937.2021.2006214.
  • Song, C.; Wu, T.; Li, Z.; Li, J.; Chen, H. Analysis of the Heat Transfer Characteristics of Blackberries During Microwave Vacuum Heating. J. Food Eng. 2018, 223, 70–78. DOI: 10.1016/j.jfoodeng.2017.11.040.
  • Borquez, R.; Melo, D.; Saavedra, C. Microwave-Vacuum Drying of Strawberries with Automatic Temperature Control. Food Bioprocess Technol. 2015, 8, 266–276. DOI: 10.1007/s11947-014-1400-0.
  • Luo, G.; Song, C.; Hongjie, P.; Li, Z.; Xu, W.; Raghavan, G. S. V.; Chen, H.; Jin, G. Optimization of the Microwave Drying Process for Potato Chips Based on the Measurement of Dielectric Properties. Dry. Technol. 2019, 37, 1329–1339. DOI: 10.1080/07373937.2018.1500482.
  • Lemus-Mondaca, R.; Zura-Bravo, L.; Ah-Hen, K.; Di Scala, K. Effect of Drying Methods on Drying Kinetics, Energy Features, Thermophysical and Microstructural Properties of Stevia Rebaudiana Leaves. J. Sci. Food Agric. 2021, 101, 6484–6495. DOI: 10.1002/jsfa.11320.
  • Nguyen, K. Q.; Vuong, Q. V.; Nguyen, M. H.; Roach, P. D. The Effects of Drying Conditions on Bioactive Compounds and Antioxidant Activity of the Australian Maroon Bush, Scaevola Spinescens. J Food Process. Preserv. 2018, 42, e13711.
  • Wojdyło, A.; Figiel, A.; Lech, K.; Nowicka, P.; Oszmiański, J. Effect of Convective and Vacuum-Microwave Drying on the Bioactive Compounds, Color, and Antioxidant Capacity of Sour Cherries. Food Bioprocess Technol. 2014, 7, 829–841. DOI: 10.1007/s11947-013-1130-8.
  • Esparza-Martinez, F. J.; Miranda-Lopez, R.; Guzman-Maldonado, S. H. Effect of Air-Drying Temperature on Extractable and Nonextractable Phenolics and Antioxidant Capacity of Lime Wastes. Ind. Crops Prod. 2016, 84, 1–6. DOI: 10.1016/j.indcrop.2016.01.043.
  • Li, W.; Wang, X.; Zhang, J.; Zhao, X.; Wu, Y.; Tan, S.; Zheng, Q. R.; Gao, X. Multivariate Analysis Illuminates the Effects of Vacuum Drying on the Extractable and Nonextractable Polyphenols Profile of Loquat Fruit. J. Food Sci. 2019, 84, 726–737. DOI: 10.1111/1750-3841.14500.
  • Nunes, J. C.; Lago, M. G.; Castelo-Branco, V. N.; Oliveira, F. R.; Torres, A. G.; Perrone, D.; Monteiro, M. Effect of Drying Method on Volatile Compounds, Phenolic Profile and Antioxidant Capacity of Guava Powders. Food Chem. 2016, 197, 881–890. DOI: 10.1016/j.foodchem.2015.11.050.
  • Dominguez-Rodriguez, G.; Marina, M. L.; Plaza, M. Strategies for the Extraction and Analysis of Nonextractable Polyphenols from Plants. J. Chromatogr. A 2017, 1514, 1–15. DOI: 10.1016/j.chroma.2017.07.066.
  • Novakovic, M. M.; Stevanovic, R. M.; Gorjanovic, R. Z.; Jovanovic, R. M.; Tesevic, R. V.; Jankovic, M. A.; Suznjevic, R. Z. Changes of Hydrogen Peroxide and Radical-Scavenging Activity of Raspberry during Osmotic, Convective, and Freeze-Drying. J. Food Sci. 2011, 76, C663–C668. DOI: 10.1111/j.1750-3841.2011.02144.x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.