186
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

Particle morphology and shrinkage in spray dryers: A review focused on modeling single droplet drying

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1138-1150 | Received 31 Jan 2024, Accepted 17 Mar 2024, Published online: 28 Mar 2024

References

  • Tran, T. T. H.; Jaskulski, M.; Tsotsas, E. Reduction of a Model for Single Droplet Drying and Application to CFD of Skim Milk Spray Drying. Drying Technol. 2017, 35, 1571–1583. DOI: 10.1080/07373937.2016.1263204.
  • Campos, E. C.; Chaves, D. H. S.; Souza, P. C.; Sousa, M. A.; Birchal, M. A. S.; Birchal, V. S. Atomizers in Spray Dryers: A Review. JoTCSTA. 2021, 8, 1–15. DOI: 10.37591/jotcsta.v8i1.5517.
  • Handscomb, C. S.; Kraft, M.; Bayly, A. E. A New Model for the Drying of Droplets Containing Suspended Solids. Chem. Eng. Sci. 2009, 64, 628–637. DOI: 10.1016/j.ces.2008.04.051.
  • Keshani, S.; Daud, W. R. W.; Nourouzi, M. M.; Namvar, F.; Ghasemi, M. Spray Drying: An Overview on Wall Deposition, Process and Modeling. J. Food Eng. 2015, 146, 152–162. DOI: 10.1016/j.jfoodeng.2014.09.004.
  • Birchal, V. S.; Passos, M. L. Modeling and Simulation of Milk Emulsions Drying in Spray Dryers. Braz. J. Chem. Eng. 2005, 22, 293–302. DOI: 10.1590/S0104-66322005000200018.
  • Kemp, I. C.; Hartwig, T.; Herdman, R.; Hamilton, P.; Bisten, A.; Bermingham, S. Spray Drying with a Two-Fluid Nozzle to Produce Fine Particles: Atomization, Scale-up, and Modeling. Drying Technol. 2016, 34, 1243–1252. DOI: 10.1080/07373937.2015.1103748.
  • Jubaer, H.; Xiao, J.; Chen, X. D.; Selomulya, C.; Woo, M. W. Identification of Regions in a Spray Dryer Susceptible to Forced Agglomeration by CFD Simulations. Powder Technol. 2019, 346, 23–37. DOI: 10.1016/j.powtec.2019.01.088.
  • Rajan, R.; Pandit, A. B. Correlations to Predict Droplet Size in Ultrasonic Atomization. Ultrasonics 2001, 39, 235–255. DOI: 10.1016/S0041-624X(01)00054-3
  • Langrish, T. A. G.; Marquez, N.; Kota, K. An Investigation and Quantitative Assessment of Particle Shape in Milk Powders from a Laboratory-Scale Spray Dryer. Drying Technol. 2006, 24, 1619–1630. DOI: 10.1080/07373930601031133.
  • Langrish, T. A. G. Multi-Scale Mathematical Modeling of Spray Dryers. J. Food Eng. 2009, 93, 218–228. DOI: 10.1016/j.jfoodeng.2009.01.019.
  • Lee, J. K. M.; Taip, F. S.; Abdullah, Z. Effectiveness of Additives in Spray Drying Performance: A Review. Food Res. 2018, 2, 486–499.2(6).134 DOI: 10.26656/fr.2017.
  • O'Sullivan, J. J.; Norwood, E.-A.; O'Mahony, J. A.; Kelly, A. L. Atomisation Technologies Used in Spray Drying in the Dairy Industry: A Review. J. Food Eng. 2019, 243, 57–69. DOI: 10.1016/j.jfoodeng.2018.08.027.
  • Both, E. M.; Siemons, I.; Boom, R. M.; Schutyser, M. A. I. The Role of Viscosity in Morphology Development during Single Droplet Drying. Food Hydrocoll. 2019, 94, 510–518. DOI: 10.1016/j.foodhyd.2019.03.023.
  • Langrish, T. A. G.; Fletcher, D. F. Prospects for the Modelling and Design of Spray Dryers in the 21st Century. Drying Technol. 2003, 21, 197–215. DOI: 10.1081/DRT-120017743.
  • Al Zaitone, B.; Al-Zahrani, A. Spray Drying of Cellulose Nanofibers: Drying Kinetics Modeling of a Single Droplet and Particle Formation. Chem. Eng. Technol. 2021, 44, 1270–1277. DOI: 10.1002/ceat.202000579.
  • Maurice, U.; Mezhericher, M.; Levy, A.; Borde, I. Drying of Droplets Containing Insoluble Nanoscale Particles: Second Drying Stage. Drying Technol. 2015, 33, 1837–1848. DOI: 10.1080/07373937.2015.1039540.
  • Schutyser, M. A. I.; Both, E. M.; Siemons, I.; Vaessen, E. M. J.; Zhang, L. Gaining Insight on Spray Drying Behavior of Foods via Single Droplet Drying Analyses. Drying Technol. 2019, 37, 525–534. DOI: 10.1080/07373937.2018.1482908.
  • Mazza, M. G. G.; Brandão, L. E. B.; Wildhagen, G. S. Characterization of the Residence Time Distribution in Spray Dryers. Drying Technol. 2003, 21, 525–538. DOI: 10.1081/DRT-120018460.
  • Vicente, J.; Pinto, J.; Menezes, J.; Gaspar, F. Fundamental Analysis of Particle Formation in Spray Drying. Powder Technol. 2013, 247, 1–7. DOI: 10.1016/j.powtec.2013.06.038.
  • Tsotsas, E. Multiscale Approaches to Processes That Combine Drying with Particle Formation. Drying Technol. 2015, 33, 1859–1871. DOI: 10.1080/07373937.2015.1047954.
  • Fu, N.; Woo, M. W.; Chen, X. D. Single Droplet Drying Technique to Study Drying Kinetics Measurement and Particle Functionality: A Review. Drying Technol. 2012, 30, 1771–1785. DOI: 10.1080/07373937.2012.708002.
  • Abdullahi, H.; Burcham, C. L.; Vetter, T. A Mechanistic Model to Predict Droplet Drying History and Particle Shell Formation in Multicomponent Systems. Chem. Eng. Sci. 2020, 224, 115713. DOI: 10.1016/j.ces.2020.115713.
  • Percy, S. R. Improvement in Drying and Concentrating Liquid Substances by Atomizing. Patent 1872, number US125406. https://patents.google.com/patent/US125406A/en
  • Ishibashi, R.; Numata, T.; Tanigawa, H.; Tsuruta, T. In-Situ Measurements of Drying and Shrinkage Characteristics during Microwave Vacuum Drying of Radish and Potato. J. Food Eng. 2022, 323, 110988. DOI: 10.1016/j.jfoodeng.2022.110988.
  • Mujumdar, A. S. Handbook of Industrial Drying; New York, NY: CRC Press, 2014.
  • Campos, E. C.; Chaves, D. H. S.; Santos, C. M. F.; Rocha, S. D. F.; Birchal, V. S. Sedimentation and Rheological Behavior of Reactive and Non-Reactive Magnesium Hydroxide Pulps for Industrial Spray Dryer Processing. Ceramica 2023, 69, 39–47. DOI: 10.1590/0366-69132023693893411.
  • Fu, N.; Woo, M. W.; Selomulya, C.; Chen, X. D. Shrinkage Behavior of Skim Milk Droplets during Air Drying. J. Food Eng. 2013, 116, 37–44. DOI: 10.1016/j.jfoodeng.2012.11.005.
  • Fu, N.; Woo, M. W.; Selomulya, C.; Chen, X. D.; Patel, K.; Schuck, P.; Jeantet, R. Drying Kinetics of Skim Milk with 50wt.% Initial Solids. J. Food Eng. 2012, 109, 701–711. DOI: 10.1016/j.jfoodeng.2011.11.018.
  • Nešić, S.; Vodnik, J. Kinetics of Droplet Evaporation. Chem. Eng. Sci. 1991, 46, 527–537. DOI: 10.1016/0009-2509(91)80013-O.
  • Mandato, S.; Rondet, E.; Delaplace, G.; Barkouti, A.; Galet, L.; Accart, P.; Ruiz, T.; Cuq, B. Liquids’ Atomization with Two Different Nozzles: Modeling of the Effects of Some Processing and Formulation Conditions by Dimensional Analysis. Powder Technol. 2012, 224, 323–330. DOI: 10.1016/j.powtec.2012.03.014.
  • Mezhericher, M.; Nunes, J. K.; Guzowski, J. J.; Stone, H. A. Aerosol-Assisted Synthesis of Submicron Particles at Room Temperature Using Ultra-Fine Liquid Atomization. Chem. Eng. J. 2018, 346, 606–620. DOI: 10.1016/j.cej.2018.04.054.
  • Gharsallaoui, A.; Roudaut, G.; Chambin, O.; Voilley, A.; Saurel, R. Applications of Spray-Drying in Microencapsulation of Food Ingredients: An Overview. Food Res. Int. 2007, 40, 1107–1121. DOI: 10.1016/j.foodres.2007.07.004.
  • Richardson, J. F.; Harker, J. H.; Backhurst, J. R. Chemical Engineering - Particle Technology and Separation Processes. Oxford, Oxon: Butterworth Heinemann, 2002.
  • Fletcher, D. F.; Guo, B.; Harvie, D. J. E.; Langrish, T. A. G.; Nijdam, J. J.; Williams, J. What is Important in the Simulation of Spray Dryer Performance and How Do Current CFD Models Perform? Appl. Math. Model. 2006, 30, 1281–1292. DOI: 10.1016/j.apm.2006.03.006.
  • Woo, M. W.; Daud, W. R. W.; Mujumdar, A. S.; Tasirin, S. M.; Talib, M. Z. M. Role of Rheological Characteristics in Amorphous Food Particle-Wall Collisions in Spray Drying. Powder Technol. 2010, 198, 251–257. DOI: 10.1016/j.powtec.2009.11.015.
  • Lin, S. X. Q.; Chen, X. D.; Pearce, D. L. Desorption Isotherm of Milk Powders at Elevated Temperatures and over a Wide Range of Relative Humidity. J. Food Eng. 2005, 68, 257–264. DOI: 10.1016/j.jfoodeng.2004.05.036.
  • Kota, K.; Langrish, T. A. G. Prediction of Wall Deposition Behaviour in a Pilot-Scale Spray Dryer Using Deposition Correlations for Pipe Flows. J. Zhejiang Univ. - Sci. A 2007, 8, 301–312. DOI: 10.1631/jzus.2007.A0301.
  • Chew, J. H.; Woo, M. W.; Chen, X. D.; Selomulya, C. Mapping the Shrinkage Behavior of Skim Milk Droplets during Convective Drying. Drying Technol. 2015, 33, 1101–1113. DOI: 10.1080/07373937.2014.985791.
  • Donadel, K.; Felisberto, M. D. V.; Laranjeira, M. C. M. Preparation and Characterization of Hydroxyapatite-Coated Iron Oxide Particles by Spray-Drying Technique. An. Acad. Bras. Cienc. 2009, 81, 179–186. DOI: 10.1590/S0001-37652009000200004.
  • Che, L.; Wu, Y.; Wang, Y.; Chen, X. D. Experimental Determination and Mathematical Modeling of the Drying Kinetics of a Single Droplet of Colloidal Silica. Drying Technol. 2017, 35, 1337–1346. DOI: 10.1080/07373937.2017.1319857.
  • Kentish, S.; Davidson, M.; Hassan, H.; Bloore, C. Milk Skin Formation during Drying. Chem. Eng. Sci. 2005, 60, 635–646. DOI: 10.1016/j.ces.2004.08.033.
  • Noguera, A. M. F.; Iturgaiz, I. A. Experimental Determination of Dynamic Pseudo-Equilibrium Moisture Content: A Practical Limit for the Drying Process. MethodsX 2023, 11, 102410. DOI: 10.1016/j.mex.2023.102410.
  • Clement, K. H.; Hallström, A.; Dich, H. C.; Le, C. M.; Mortensen, J.; Thomsen, H. A. On the Dynamic Behaviour of Spray Dryers. Chem. Eng. Res. Des. 1991, 69, 245–251.
  • Farid, M. A New Approach to Modelling of Single Droplet Drying. Chem. Eng. Sci. 2003, 58, 2985–2993. DOI: 10.1016/S0009-2509(03)00161-1.
  • Both, E. M.; Karlina, A. M.; Boom, R. M.; Schutyser, M. A. I. Morphology Development during Sessile Single Droplet Drying of Mixed Maltodextrin and Whey Protein Solutions. Food Hydrocoll 2018, 75, 202–210. DOI: 10.1016/j.foodhyd.2017.08.022.
  • Walton, D. E. The Morphology of Spray-Dried Particles a Qualitative View. Drying Technol. 2000, 18, 1943–1986. DOI: 10.1080/07373930008917822.
  • Kim, E. H.-J.; Chen, X. D.; Pearce, D. On the Mechanisms of Surface Formation and the Surface Compositions of Industrial Milk Powders. Drying Technol. 2003, 21, 265–278. DOI: 10.1081/DRT-120017747.
  • Bergna, H. E.; Roberts, W. O. Colloidal Silica: Fundamentals and Applications. Boca Raton, FL: CRC Press, 2005.
  • Ismael, M. R.; dos Anjos, R. D.; Salomão, R.; Pandolfelli, V. C. Colloidal Silica as a Nanostructured Binder for Refractory Castables. Refract. Appl. News 2006, 11, 16–20.
  • Demircioglu, D. Surface Active Silica Sols: effect of Peg-Silica Interactions. Master’s Thesis. Chalmers University of Technology, Göteborg, Sweden, 2011
  • Johnsson, A. On the Electrolyte Induced Aggregation of Concentrated Silica Dispersions. Ph.D. Thesis. University of Gotheburg, Göteborg, Sweden, 2011
  • Eijkelboom, N. M.; van Boven, A. P.; Siemons, I.; Wilms, P. F. C.; Boom, R. M.; Kohlus, R.; Schutyser, M. A. I. Particle Structure Development during Spray Drying from a Single Droplet to Pilot-Scale Perspective. J. Food Eng. 2023, 337, 111222. DOI: 10.1016/j.jfoodeng.2022.111222.
  • Shabde, V. S.; Emets, S. V.; Mann, U.; Hoo, K. A.; Carlson, N. N.; Gladysz, G. M. Modeling a Hollow Micro-Particle Production Process. Comput. Chem. Eng. 2005, 29, 2420–2428. DOI: 10.1016/j.compchemeng.2005.05.019.
  • Mezhericher, M.; Levy, A.; Borde, I. Theoretical Drying Model of Single Droplets Containing Insoluble or Dissolved Solids. Drying Technol. 2007, 25, 1025–1032. DOI: 10.1080/07373930701394902.
  • Seydel, P.; Blömer, J.; Bertling, J. Modeling Particle Formation at Spray Drying Using Population Balances. Drying Technol. 2006, 24, 137–146. DOI: 10.1080/07373930600558912.
  • Chaves, D. H. S.; Birchal, V. S.; Costa, E. F. Jr, Simulation of a Single Spherical Droplet Drying considering Shrinking and Temperature Profiles: First Drying Stage. An. Acad. Bras. Cienc. 2023, 95, e20220202. DOI: 10.1590/0001-3765202320220202.
  • Bhadra, R.; Muthukumarappan, K.; Rosentrater, K. A.; Kannadhason, S. Drying Kinetics of Distillers Wet Grains (DWG) under Varying Condensed Distillers Solubles (CDS) and Temperature Levels. Cereal Chem. 2011, 88, 451–458. DOI: 10.1094/CCHEM-02-11-0018.
  • Al Zaitone, B.; Al-Zahrani, A.; Ahmed, O.; Saeed, U.; Taimoor, A. A. Spray Drying of PEG6000 Suspension: Reaction Engineering Approach (REA) Modeling of Single Droplet Drying Kinetics. Processes 2022, 10, 1365. DOI: 10.3390/pr10071365.
  • Sefidan, A. M.; Sellier, M.; Hewett, J. N.; Abdollahi, A.; Willmott, G. R.; Becker, S. M. Wet-Core Temperature and Concentration Profiles in a Single Skim Milk Droplet Drying Process. Appl. Therm. Eng. 2022, 212, 118571. DOI: 10.1016/j.applthermaleng.2022.118571.
  • Adrover, A.; Brasiello, A.; Ponso, G. A Moving Boundary Model for Food Isothermal Drying and Shrinkage: A Shortcut Numerical Method for Estimating the Shrinkage Factor. J. Food Eng. 2019, 244, 212–219. DOI: 10.1016/j.jfoodeng.2018.09.030.
  • Lin, S. X. Q.; Chen, X. D. Improving the Glass-Filament Method for Accurate Measurement of Drying Kinetics of Liquid Droplets. Chem. Eng. Res. Des. 2002, 80, 401–410. DOI: 10.1205/026387602317446443.
  • Lin, S. X. Q.; Chen, X. D. Changes in Milk Droplet Diameter during Drying under Constant Drying Conditions Investigated Using the Glass-Filament Method. Food Bioprod. Process. 2004, 82, 213–218. DOI: 10.1205/fbio.82.3.213.44178.
  • Lin, S. X. Q.; Chen, X. D. Engineering Data of Diameter Change during Air Drying of Milk Droplets with 40 wt% Initial Solids Content. Drying Technol. 2009, 27, 1028–1032. DOI: 10.1080/07373930903218222.
  • Gac, J. M.; Gradoń, L. A Distributed Parameter Model for the Spray Drying of Multicomponent Droplets with a Crust Formation. Adv. Powder Technol. 2013, 24, 324–330. DOI: 10.1016/j.apt.2012.08.004.
  • Dalmaz, N.; Ozbelge, H. O.; Eraslan, A. N.; Uludag, Y. Heat and Mass Transfer Mechanisms in Drying of a Suspension Droplet: A New Computational Model. Drying Technol. 2007, 25, 391–400. DOI: 10.1080/07373930601184569.
  • Elperin, T.; Krasovitov, B. Evaporation of Liquid Droplets Containing Small Solid Particles. Int. J. Heat Mass Transf. 1995, 38, 2259–2267. DOI: 10.1016/0017-9310(94)00337-U.
  • Levi-Hevroni, D.; Levy, A.; Borde, I. Mathematical Modeling of Drying of Liquid/Solid Slurries in Steady State One-Dimensional Flow. Drying Technol. 1995, 13, 1187–1201. DOI: 10.1080/07373939508917016.
  • Ranz, W. E.; Marshall, W. R. Jr, Evaporation from Drops. Chem. Eng. Prog. 1952, 48, 141–180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.