Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 9
106
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

A critical review on developments in drying technologies for enhanced stability and bioavailability of pharmaceuticals

, , , , , , & ORCID Icon show all
Pages 1415-1441 | Received 17 Nov 2023, Accepted 15 May 2024, Published online: 02 Jun 2024

References

  • Sharma, A.; Khamar, D.; Cullen, S.; Hayden, A.; Hughes, H. Innovative Drying Technologies for Biopharmaceuticals. Int. J. Pharm. 2021, 609, 121115. DOI: 10.1016/j.ijpharm.2021.121115.
  • Pardeshi, S. R.; More, M. P.; Pagar, R.; Kole, E. B.; Patil, T. S.; Giram, P. S.; Pardeshi, C. V.; Mandpe, S. R.; Deshmukh, P. K.; Patil, P. B.; et al. Importance of Nanomedicine in Human Health. In Green Sustainable Process for Chemical and Environmental Engineering and Science; Elsevier: Amsterdam, Netherlands, 2023; pp 3–33. DOI: 10.1016/B978-0-323-95171-5.00014-5.
  • Filipe, V.; Hawe, A.; Carpenter, J. F.; Jiskoot, W. Analytical Approaches to Assess the Degradation of Therapeutic Proteins. TrAC Trends Anal. Chem. 2013, 49, 118–125. DOI: 10.1016/j.trac.2013.05.005.
  • Chen, Y.; Mutukuri, T. T.; Wilson, N. E.; Zhou, Q. (Tony). Pharmaceutical Protein Solids: Drying Technology, Solid-State Characterization and Stability. Adv. Drug Deliv. Rev. 2021, 172, 211–233. DOI: 10.1016/j.addr.2021.02.016.
  • Kole, E.; Jadhav, K.; Shirsath, N.; Dudhe, P.; Verma, R. K.; Chatterjee, A.; Naik, J. Nanotherapeutics for Pulmonary Drug Delivery: An Emerging Approach to Overcome Respiratory Diseases. J. Drug Deliv. Sci. Technol. 2023, 81, 104261. DOI: 10.1016/j.jddst.2023.104261.
  • Oyinloye, T. M.; Yoon, W. B. Effect of Freeze-Drying on Quality and Grinding Process of Food Produce: A Review. Processes 2020, 8, 354. DOI: 10.3390/pr8030354.
  • Walters, R. H.; Bhatnagar, B.; Tchessalov, S.; Izutsu, K.-I. I.; Tsumoto, K.; Ohtake, S. Next Generation Drying Technologies for Pharmaceutical Applications. J. Pharm. Sci. 2014, 103, 2673–2695. DOI: 10.1002/jps.23998.
  • Patil, A.; Patil, P.; Pardeshi, S.; Shrimal, P.; Rebello, N.; Mohite, P. B.; Chatterjee, A.; Mujumdar, A.; Naik, J. Combined Microfluidics and Drying Processes for the Continuous Production of Micro-/Nanoparticles for Drug Delivery: A Review. Dry. Technol. 2023, 41, 1533–1568. DOI: 10.1080/07373937.2023.2167827.
  • Butreddy, A.; Dudhipala, N.; Janga, K. Y.; Gaddam, R. P. Lyophilization of Small-Molecule Injectables: An Industry Perspective on Formulation Development, Process Optimization, Scale-Up Challenges, and Drug Product Quality Attributes. AAPS PharmSciTech 2020, 21, 252. DOI: 10.1208/s12249-020-01787-w.
  • Credence Research. Pharmaceutical Freeze Drying Market; 2023. https://www.credenceresearch.com/report/pharmaceutical-freeze-drying-market.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. DOI: 10.1016/j.cis.2015.05.003.
  • Jadhav, K.; Jhilta, A.; Singh, R.; Ray, E.; Sharma, N.; Shukla, R.; Singh, A. K.; Verma, R. K. Clofazimine Nanoclusters Show High Efficacy in Experimental TB with Amelioration in Paradoxical Lung Inflammation. Biomater. Adv. 2023, 154, 213594. DOI: 10.1016/j.bioadv.2023.213594.
  • Vaghasiya, K.; Ray, E.; Sharma, A.; Singh, R.; Jadhav, K.; Khan, R.; Katare, O. P.; Verma, R. K. Systematic Development and Optimization of Spray-Dried Quercetin-HP-β-Cyclodextrin Microparticles for DPI-Based Therapy of Lung Cancer. J. Mater. Sci. 2021, 56, 14700–14716. DOI: 10.1007/s10853-021-06205-5.
  • Pardeshi, S.; More, M.; Patil, P.; Pardeshi, C.; Deshmukh, P.; Mujumdar, A.; Naik, J. A Meticulous Overview on Drying-Based (Spray-, Freeze-, and Spray-Freeze) Particle Engineering Approaches for Pharmaceutical Technologies. Dry. Technol. 2021, 39, 1447–1491. 39. DOI: 10.1080/07373937.2021.1893330.
  • Mordor Intelligence Research & Advisory. Pharmaceutical Spray Drying Market Size & Share Analysis - Growth Trends & Forecasts (2024–2029); 2024.
  • Verma, U.; Naik, J. B.; Patil, J. S.; Yadava, S. K. Screening of Process Variables to Enhance the Solubility of Famotidine with 2-HydroxyPropyl–β-Cyclodextrin & PVP K-30 by Using Plackett–Burman Design Approach. Mater. Sci. Eng. C Mater. Biol. Appl. 2017, 77, 282–292. DOI: 10.1016/j.msec.2017.03.238.
  • Mandpe, S.; Kole, E.; Parate, V.; Chatterjee, A.; Mujumdar, A.; Naik, J. Design, Development, and Evaluation of Spray Dried Flurbiprofen Loaded Sustained Release Polymeric Nanoparticles Using QBD Approach to Manage Inflammation. Dry. Technol. 2023, 41, 2418–2430. DOI: 10.1080/07373937.2023.2251572.
  • O’Sullivan, A.; Ryan, K. M.; Padrela, L. Production of Biopharmaceutical Dried-Powders Using Supercritical CO2 Technology. J. Supercrit. Fluids 2022, 187, 105645. DOI: 10.1016/j.supflu.2022.105645.
  • Emami, F.; Keihan Shokooh, M.; Mostafavi Yazdi, S. J. Recent Progress in Drying Technologies for Improving the Stability and Delivery Efficiency of Biopharmaceuticals. J. Pharm. Investig. 2023, 53, 35–57. DOI: 10.1007/s40005-022-00610-x.
  • Jakhar, D. K.; Vishwakarma, V. K.; Singh, R.; Jadhav, K.; Shah, S.; Arora, T.; Verma, R. K.; Yadav, H. N. Fat Fighting Liraglutide Based Nano-Formulation to Reverse Obesity: Design, Development and Animal Trials. Int. J. Pharm. 2023, 634, 122585. DOI: 10.1016/j.ijpharm.2023.122585.
  • Haeuser, C.; Goldbach, P.; Huwyler, J.; Friess, W.; Allmendinger, A. Impact of Dextran on Thermal Properties, Product Quality Attributes, and Monoclonal Antibody Stability in Freeze-Dried Formulations. Eur. J. Pharm. Biopharm. 2020, 147, 45–56. DOI: 10.1016/j.ejpb.2019.12.010.
  • Vass, P.; Démuth, B.; Hirsch, E.; Nagy, B.; Andersen, S. K.; Vigh, T.; Verreck, G.; Csontos, I.; Nagy, Z. K.; Marosi, G. Drying Technology Strategies for Colon-Targeted Oral Delivery of Biopharmaceuticals. J. Control. Release 2019, 296, 162–178. DOI: 10.1016/j.jconrel.2019.01.023.
  • Chakraborty, J.; Subash, M.; Thorat, B. N. Drying Induced Polymorphic Transformation of Pharmaceutical Ingredients: A Critical Review of Recent Progresses and Challenges. Dry. Technol 2022, 40, 2817–2835. DOI: 10.1080/07373937.2021.1983823.
  • Capozzi, L. C.; Trout, B. L.; Pisano, R. From Batch to Continuous: Freeze-Drying of Suspended Vials for Pharmaceuticals in Unit-Doses. Ind. Eng. Chem. Res. 2019, 58, 1635–1649. DOI: 10.1021/acs.iecr.8b02886.
  • Ghaemmaghamian, Z.; Zarghami, R.; Walker, G.; O'Reilly, E.; Ziaee, A. Stabilizing Vaccines via Drying: Quality by Design Considerations. Adv. Drug Deliv. Rev. 2022, 187, 114313. DOI: 10.1016/j.addr.2022.114313.
  • Ishwarya, S. P.; Anandharamakrishnan, C.; Stapley, A. G. F. Spray-Freeze-Drying: A Novel Process for the Drying of Foods and Bioproducts. Trends Food Sci. Technol. 2015, 41, 161–181. DOI: 10.1016/j.tifs.2014.10.008.
  • Pisano, R.; Arsiccio, A.; Capozzi, L. C.; Trout, B. L. Achieving Continuous Manufacturing in Lyophilization: Technologies and Approaches. Eur. J. Pharm. Biopharm. 2019, 142, 265–279. DOI: 10.1016/j.ejpb.2019.06.027.
  • Lammens, J.; Goudarzi, N. M.; Leys, L.; Nuytten, G.; Van Bockstal, P.-J.; Vervaet, C.; Boone, M. N.; De Beer, T. Spin Freezing and Its Impact on Pore Size, Tortuosity and Solid State. Pharmaceutics 2021, 13, 2126. DOI: 10.3390/pharmaceutics13122126.
  • Waghulde, M.; Naik, J. Comparative Study of Encapsulated Vildagliptin Microparticles Produced by Spray Drying and Solvent Evaporation Technique. Dry. Technol. 2017, 35, 1644–1654. DOI: 10.1080/07373937.2016.1273230.
  • Naik, J. B.; Waghulde, M. R. Development of Vildagliptin Loaded Eudragit® Microspheres by Screening Design: In Vitro Evaluation. J. Pharm. Investig. 2018, 48, 627–637. DOI: 10.1007/s40005-017-0355-3.
  • Deshmukh, R.; Mujumdar, A.; Naik, J. Production of Aceclofenac-Loaded Sustained Release Micro/Nanoparticles Using Pressure Homogenization and Spray Drying. Dry. Technol. 2018, 36, 459–467. DOI: 10.1080/07373937.2017.1341418.
  • Singh, R.; Jadhav, K.; Kamboj, R.; Malhotra, H.; Ray, E.; Jhilta, A.; Dhir, V.; Verma, R. K. Self-Actuating Inflammation Responsive Hydrogel Microsphere Formulation for Controlled Drug Release in Rheumatoid Arthritis (RA): Animal Trials and Study in Human Fibroblast like Synoviocytes (HFLS) of RA Patients. Biomater. Adv. 2024, 160, 213853. DOI: 10.1016/j.bioadv.2024.213853.
  • Khaire, R. A.; Gogate, P. R. Novel Approaches Based on Ultrasound for Spray Drying of Food and Bioactive Compounds. Dry. Technol. 2021, 39, 1832–1853. DOI: 10.1080/07373937.2020.1804926.
  • Klimša, V.; Ruphuy, G.; Jonáš, J.; Mašková, L.; Kašpar, O.; Žvátora, P.; Štěpánek, F. Spray Drying Robot for High-Throughput Combinatorial Fabrication of Multicomponent Solid Dispersions. Powder Technol. 2023, 428, 118872. DOI: 10.1016/j.powtec.2023.118872.
  • Kole, E.; Pardeshi, S.; Mujumdar, A. S.; Naik, J. Prospects for the Development of the Industrial Process for Drying Nanoformulations. In Particulate Drying; CRC Press: Boca Raton, 2023; pp 131–150. DOI: 10.1201/9781003207108-8.
  • Wagh, P. S.; Naik, J. B. Development of Mefenamic Acid–Loaded Polymeric Microparticles Using Solvent Evaporation and Spray-Drying Technique. Dry. Technol. 2016, 34, 608–617. DOI: 10.1080/07373937.2015.1064947.
  • Deshmukh, R. K.; Naik, J. B. The Impact of Preparation Parameters on Sustained Release Aceclofenac Microspheres: A Design of Experiments. Adv. Powder Technol. 2015, 26, 244–252. DOI: 10.1016/j.apt.2014.10.004.
  • Deshmukh, R. K.; Naik, J. B. Optimization of Spray-Dried Diclofenac Sodium-Loaded Microspheres by Screening Design. Dry. Technol. 2016, 34, 1593–1603. DOI: 10.1080/07373937.2016.1138121.
  • Patil, P.; Khairnar, G.; Naik, J. Preparation and Statistical Optimization of Losartan Potassium Loaded Nanoparticles Using Box Behnken Factorial Design: Microreactor Precipitation. Chem. Eng. Res. Des. 2015, 104, 98–109. DOI: 10.1016/j.cherd.2015.07.021.
  • Deshmukh, R.; Wagh, P.; Naik, J. Solvent Evaporation and Spray Drying Technique for Micro- and Nanospheres/Particles Preparation: A Review. Dry. Technol. 2016, 34, 1758–1772. DOI: 10.1080/07373937.2016.1232271.
  • Mokale, V.; Rajput, R.; Patil, J.; Yadava, S.; Naik, J. Formulation of Metformin Hydrochloride Nanoparticles by Using Spray Drying Technique and in Vitro Evaluation of Sustained Release with 32-Level Factorial Design Approach. Dry. Technol. 2016, 34, 1455–1461. DOI: 10.1080/07373937.2015.1125916.
  • Malamatari, M.; Charisi, A.; Malamataris, S.; Kachrimanis, K.; Nikolakakis, I. Spray Drying for the Preparation of Nanoparticle-Based Drug Formulations as Dry Powders for Inhalation. Processes 2020, 8, 788. DOI: 10.3390/pr8070788.
  • Pardeshi, S.; Patil, P.; Rajput, R.; Mujumdar, A.; Naik, J. Preparation and Characterization of Sustained Release Pirfenidone Loaded Microparticles for Pulmonary Drug Delivery: Spray Drying Approach. Dry. Technol. 2021, 39, 337–347. DOI: 10.1080/07373937.2020.1833213.
  • Langford, A.; Bhatnagar, B.; Walters, R.; Tchessalov, S.; Ohtake, S. Drying Technologies for Biopharmaceutical Applications: Recent Developments and Future Direction. Dry. Technol. 2018, 36, 677–684. DOI: 10.1080/07373937.2017.1355318.
  • Yang, D.-L.; Liu, R.-K.; Wei, Y.; Sun, Q.; Wang, J.-X. Micro-Sized Nanoaggregates: Spray-Drying-Assisted Fabrication and Applications. Particuology 2024, 85, 22–48. DOI: 10.1016/j.partic.2023.03.013.
  • Verma, U.; Mujumdar, A.; Naik, J. Preparation of Efavirenz Resinate by Spray Drying Using Response Surface Methodology and Its Physicochemical Characterization for Taste Masking. Dry. Technol. 2020, 38, 793–805. DOI: 10.1080/07373937.2019.1590845.
  • Waghulde, M.; Rajput, R.; Mujumdar, A.; Naik, J. Production and Evaluation of Vildagliptin-Loaded Poly(Dl-Lactide) and Poly(Dl-Lactide-Glycolide) Micro-/Nanoparticles: Response Surface Methodology Approach. Dry. Technol. 2019, 37, 1265–1276. DOI: 10.1080/07373937.2018.1495231.
  • Sharma, A.; Vaghasiya, K.; Gupta, P.; Singh, A. K.; Gupta, U. D.; Verma, R. K. Dynamic Mucus Penetrating Microspheres for Efficient Pulmonary Delivery and Enhanced Efficacy of Host Defence Peptide (HDP) in Experimental Tuberculosis. J. Control. Release 2020, 324, 17–33. DOI: 10.1016/j.jconrel.2020.05.013.
  • Wagh, P.; Mujumdar, A.; Naik, J. B. Preparation and Characterization of Ketorolac Tromethamine-Loaded Ethyl Cellulose Micro-/Nanospheres Using Different Techniques. Part. Sci. Technol. 2019, 37, 347–357. DOI: 10.1080/02726351.2017.1383330.
  • Binesh, N.; Babaloo, H.; Farhadian, N. Microencapsulation: Spray Drying. In Principles of Biomaterials Encapsulation : Volume One; Elsevier: Amsterdam, Netherlands, 2023; pp. 271–296. DOI: 10.1016/B978-0-323-85947-9.00010-8.
  • Ramos-Escudero, F.; Casimiro-Gonzales, S.; Cádiz-Gurrea, M.; de la L.; Cancino Chávez, K.; Basilio-Atencio, J.; Ordoñez, E. S.; Muñoz, A. M.; Segura-Carretero, A. Optimizing Vacuum Drying Process of Polyphenols, Flavanols and DPPH Radical Scavenging Assay in Pod Husk and Bean Shell Cocoa. Sci. Rep. 2023, 13, 13900. DOI: 10.1038/s41598-023-40815-0.
  • Orrego, C. E.; Salgado, N.; Sarmiento, L. F. Freeze Drying and Vacuum Drying. In Drying Technology in Food Processing; Elsevier: Amsterdam, Netherlands, 2023; pp 203–240. DOI: 10.1016/B978-0-12-819895-7.00017-1.
  • Jadhav, K.; Singh, R.; Ray, E.; Singh, A. K.; Verma, R. K. Taming the Devil: Antimicrobial Peptides for Safer TB Therapeutics. Curr. Protein Pept. Sci. 2022, 23, 643–656. DOI: 10.2174/1389203723666220526161109.
  • Tyagi, P.; Trivedi, R.; Pechenov, S.; Patel, C.; Revell, J.; Wills, S.; Huang, Y.; Rosenbaum, A. I.; Subramony, J. A. Targeted Oral Peptide Delivery Using Multi-Unit Particulates: Drug and Permeation Enhancer Layering Approach. J. Control. Release 2021, 338, 784–791. DOI: 10.1016/j.jconrel.2021.09.002.
  • Misra, S.; Pandey, P.; Dalbhagat, C. G.; Mishra, H. N. Emerging Technologies and Coating Materials for Improved Probiotication in Food Products: A Review. Food Bioproc. Tech. 2022, 15, 998–1039. DOI: 10.1007/s11947-021-02753-5.
  • Assadpour, E.; Jafari, S. M. Advances in Spray-Drying Encapsulation of Food Bioactive Ingredients: From Microcapsules to Nanocapsules. Annu. Rev. Food Sci. Technol. 2019, 10, 103–131. DOI: 10.1146/annurev-food-032818-121641.
  • Arpagaus, C.; John, P.; Collenberg, A.; Rütti, D. Nanocapsules Formation by Nano Spray Drying. In Nanoencapsulation Technologies for the Food and Nutraceutical Industries; Elsevier: Amsterdam, Netherlands, 2017; pp 346–401. DOI: 10.1016/B978-0-12-809436-5.00010-0.
  • Chopde, S.; Datir, R.; Deshmukh, G.; Dhotre, A.; Patil, M. Nanoparticle Formation by Nanospray Drying & Its Application in Nanoencapsulation of Food Bioactive Ingredients. J. Agric. Food Res. 2020, 2, 100085. DOI: 10.1016/j.jafr.2020.100085.
  • Bürki, K.; Jeon, I.; Arpagaus, C.; Betz, G. New Insights into Respirable Protein Powder Preparation Using a Nano Spray Dryer. Int. J. Pharm. 2011, 408, 248–256. DOI: 10.1016/j.ijpharm.2011.02.012.
  • Lee, S. H.; Heng, D.; Ng, W. K.; Chan, H.-K.; Tan, R. B. H. Nano Spray Drying: A Novel Method for Preparing Protein Nanoparticles for Protein Therapy. Int. J. Pharm. 2011, 403, 192–200. DOI: 10.1016/j.ijpharm.2010.10.012.
  • Fontana, M. C.; Laureano, J. V.; Forgearini, B.; dos Santos, J.; Pohlmann, A. R.; Guterres, S. S.; de Araujo, B. V.; Beck, R. C. R. Spray-Dried Raloxifene Submicron Particles for Pulmonary Delivery: Development and in Vivo Pharmacokinetic Evaluation in Rats. Int. J. Pharm. 2020, 585, 119429. DOI: 10.1016/j.ijpharm.2020.119429.
  • Tiozzo Fasiolo, L.; Manniello, M. D.; Banella, S.; Napoli, L.; Bortolotti, F.; Quarta, E.; Colombo, P.; Balafas, E.; Kostomitsopoulos, N.; Rekkas, D. M.; et al. Flurbiprofen Sodium Microparticles and Soft Pellets for Nose-to-Brain Delivery: Serum and Brain Levels in Rats after Nasal Insufflation. Int. J. Pharm. 2021, 605, 120827. DOI: 10.1016/j.ijpharm.2021.120827.
  • Zaghloul, N.; Mahmoud, A. A.; Elkasabgy, N. A.; El Hoffy, N. M. PLGA-Modified Syloid ® -Based Microparticles for the Ocular Delivery of Terconazole: In-Vitro and in-Vivo Investigations. Drug Deliv. 2022, 29, 2117–2129. DOI: 10.1080/10717544.2022.2092239.
  • Nie, H.; Zhang, Y.; Yu, H.; Xiao, H.; Li, T.; Yang, Q. Oral Delivery of Carrier-Free Dual-Drug Nanocrystal Self-Assembled Microspheres Improved NAD+ Bioavailability and Attenuated Cardiac Ischemia/Reperfusion Injury in Mice. Drug Deliv. 2021, 28, 433–444. DOI: 10.1080/10717544.2021.1886198.
  • Hufnagel, S.; Sahakijpijarn, S.; Moon, C.; Cui, Z.; Williams, R. O. III, The Development of Thin-Film Freezing and Its Application to Improve Delivery of Biologics as Dry Powder Aerosols. KONA 2022, 39, 176–192. DOI: 10.14356/kona.2022010.
  • Praphawatvet, T.; Cui, Z.; Williams, R. O. Pharmaceutical Dry Powders of Small Molecules Prepared by Thin-Film Freezing and Their Applications – a Focus on the Physical and Aerosol Properties of the Powders. Int. J. Pharm. 2022, 629, 122357. DOI: 10.1016/j.ijpharm.2022.122357.
  • Emami, F.; Vatanara, A.; Park, E. J.; Na, D. H. Drying Technologies for the Stability and Bioavailability of Biopharmaceuticals. Pharmaceutics 2018, 10, 131. DOI: 10.3390/pharmaceutics10030131.
  • Watts, A. B.; Wang, Y.-B.; Johnston, K. P.; Williams, R. O. Respirable Low-Density Microparticles Formed in Situ from Aerosolized Brittle Matrices. Pharm. Res. 2013, 30, 813–825. DOI: 10.1007/s11095-012-0922-2.
  • Li, H.; Zhang, M.; Xiong, L.; Feng, W.; Williams, R. O. Bioavailability Improvement of Carbamazepine via Oral Administration of Modified-Release Amorphous Solid Dispersions in Rats. Pharmaceutics 2020, 12, 1023. DOI: 10.3390/pharmaceutics12111023.
  • Zhang, M.; Li, H.; Lang, B.; O'Donnell, K.; Zhang, H.; Wang, Z.; Dong, Y.; Wu, C.; Williams, R. O. Formulation and Delivery of Improved Amorphous Fenofibrate Solid Dispersions Prepared by Thin Film Freezing. Eur. J. Pharm. Biopharm. 2012, 82, 534–544. DOI: 10.1016/j.ejpb.2012.06.016.
  • Pardeshi, S. R.; Kole, E. B.; Kapare, H. S.; Chandankar, S. M.; Shinde, P. J.; Boisa, G. S.; Salgaonkar, S. S.; Giram, P. S.; More, M. P.; Kolimi, P.; et al. Progress on Thin Film Freezing Technology for Dry Powder Inhalation Formulations. Pharmaceutics 2022, 14, 2632. DOI: 10.3390/pharmaceutics14122632.
  • Jara, M. O.; Warnken, Z. N.; Sahakijpijarn, S.; Moon, C.; Maier, E. Y.; Christensen, D. J.; Koleng, J. J.; Peters, J. I.; Hackman Maier, S. D.; Williams, R. O. III, Niclosamide Inhalation Powder Made by Thin-Film Freezing: Multi-Dose Tolerability and Exposure in Rats and Pharmacokinetics in Hamsters. Int. J. Pharm. 2021, 603, 120701. DOI: 10.1016/j.ijpharm.2021.120701.
  • Yu, Y.-S.; AboulFotouh, K.; Xu, H.; Williams, G.; Suman, J.; Cano, C.; Warnken, Z. N.; Wu, K. C.-W.; Williams, R. O.; Cui, Z. Feasibility of Intranasal Delivery of Thin-Film Freeze-Dried, Mucoadhesive Vaccine Powders. Int. J. Pharm. 2023, 640, 122990. DOI: 10.1016/j.ijpharm.2023.122990.
  • Wang, J.-L.; Hanafy, M. S.; Xu, H.; Leal, J.; Zhai, Y.; Ghosh, D.; Williams, R. O.; c, David Charles Smyth, H.; Cui, Z. Aerosolizable SiRNA-Encapsulated Solid Lipid Nanoparticles Prepared by Thin-Film Freeze-Drying for Potential Pulmonary Delivery. Int. J. Pharm. 2021, 596, 120215. DOI: 10.1016/j.ijpharm.2021.120215.
  • Hufnagel, S.; Xu, H.; Sahakijpijarn, S.; Moon, C.; Chow, L. Q. M.; Williams, R. O.; III,.; Cui, Z. Dry Powders for Inhalation Containing Monoclonal Antibodies Made by Thin-Film Freeze-Drying. Int. J. Pharm. 2022, 618, 121637. DOI: 10.1016/j.ijpharm.2022.121637.
  • Zhang, H.; Zhang, Y.; Williams, R. O.; Smyth, H. D. C. Development of PEGylated Chitosan/CRISPR-Cas9 Dry Powders for Pulmonary Delivery via Thin-Film Freeze-Drying. Int. J. Pharm. 2021, 605, 120831. DOI: 10.1016/j.ijpharm.2021.120831.
  • Zhang, Y.; Soto, M.; Ghosh, D.; Williams, R. O. Manufacturing Stable Bacteriophage Powders by Including Buffer System in Formulations and Using Thin Film Freeze-Drying Technology. Pharm. Res. 2021, 38, 1793–1804. DOI: 10.1007/s11095-021-03111-y.
  • Kole, E.; Jadhav, K.; Singh, R.; Mandpe, S.; Abhang, A.; Verma, R. K.; Naik, J. Recent Developments in Tyrosine Kinase Inhibitor-Based Nanotherapeutics for EGFR-Resistant Non-Small Cell Lung Cancer. Curr. Drug Deliv. 2024, 21, 1-12. DOI: 10.2174/0115672018278617231207051907.
  • Sahakijpijarn, S.; Moon, C.; Ma, X.; Su, Y.; Koleng, J. J.; Dolocan, A.; Williams, R. O. Using Thin Film Freezing to Minimize Excipients in Inhalable Tacrolimus Dry Powder Formulations. Int. J. Pharm. 2020, 586, 119490. DOI: 10.1016/j.ijpharm.2020.119490.
  • Wanning, S.; Süverkrüp, R.; Lamprecht, A. Aerodynamic Droplet Stream Expansion for the Production of Spray Freeze-Dried Powders. AAPS PharmSciTech 2017, 18, 1760–1769. DOI: 10.1208/s12249-016-0648-2.
  • Baldelli, A.; Cidem, A.; Guo, Y.; Ong, H. X.; Singh, A.; Traini, D.; Pratap-Singh, A. Spray Freeze Drying for Protein Encapsulation: Impact of the Formulation to Morphology and Stability. Dry. Technol. 2023, 41, 137–150. DOI: 10.1080/07373937.2022.2089162.
  • Han, F.; Zhang, W.; Wang, Y.; Xi, Z.; Chen, L.; Li, S.; Xu, L. Applying Supercritical Fluid Technology to Prepare Ibuprofen Solid Dispersions with Improved Oral Bioavailability. Pharmaceutics 2019, 11, 67. DOI: 10.3390/pharmaceutics11020067.
  • Sharma, A.; Vaghasiya, K.; Ray, E.; Gupta, P.; Gupta, U. D.; Singh, A. K.; Verma, R. K. Targeted Pulmonary Delivery of the Green Tea Polyphenol Epigallocatechin Gallate Controls the Growth of Mycobacterium Tuberculosis by Enhancing the Autophagy and Suppressing Bacterial Burden. ACS Biomater. Sci. Eng. 2020, 6, 4126–4140. DOI: 10.1021/acsbiomaterials.0c00823.
  • Rogers, S.; Wu, W. D.; Saunders, J.; Chen, X. D. Characteristics of Milk Powders Produced by Spray Freeze Drying. Dry. Technol. 2008, 26, 404–412. DOI: 10.1080/07373930801929003.
  • Adali, M. B.; Barresi, A. A.; Boccardo, G.; Pisano, R. Spray Freeze-Drying as a Solution to Continuous Manufacturing of Pharmaceutical Products in Bulk. Processes 2020, 8, 709. DOI: 10.3390/pr8060709.
  • Brunaugh, A. D.; Wu, T.; Kanapuram, S. R.; Smyth, H. D. C. Effect of Particle Formation Process on Characteristics and Aerosol Performance of Respirable Protein Powders. Mol. Pharmaceut. 2019, 16, 4165–4180. DOI: 10.1021/acs.molpharmaceut.9b00496.
  • Wanning, S.; Süverkrüp, R.; Lamprecht, A. Pharmaceutical Spray Freeze Drying. Int. J. Pharm. 2015, 488, 136–153. DOI: 10.1016/j.ijpharm.2015.04.053.
  • Sharma, A.; Vaghasiya, K.; Gupta, P.; Gupta, U. D.; Verma, R. K. Reclaiming Hijacked Phagosomes: Hybrid Nano-in-Micro Encapsulated MIAP Peptide Ensures Host Directed Therapy by Specifically Augmenting Phagosome-Maturation and Apoptosis in TB Infected Macrophage Cells. Int. J. Pharm. 2018, 536, 50–62. DOI: 10.1016/j.ijpharm.2017.11.046.
  • Rostamnezhad, M.; Jafari, H.; Moradikhah, F.; Bahrainian, S.; Faghihi, H.; Khalvati, R.; Bafkary, R.; Vatanara, A. Spray Freeze-Drying for Inhalation Application: Process and Formulation Variables. Pharm. Dev. Technol. 2022, 27, 251–267. DOI: 10.1080/10837450.2021.2021941.
  • Emami, F.; Vatanara, A.; Najafabadi, A. R.; Kim, Y.; Park, E. J.; Sardari, S.; Na, D. H. Effect of Amino Acids on the Stability of Spray Freeze-Dried Immunoglobulin G in Sugar-Based Matrices. Eur. J. Pharm. Sci. 2018, 119, 39–48. DOI: 10.1016/j.ejps.2018.04.013.
  • Ramezani, V.; Vatanara, A.; Seyedabadi, M.; Nabi Meibodi, M.; Fanaei, H. Application of Cyclodextrins in Antibody Microparticles: Potentials for Antibody Protection in Spray Drying. Drug Dev. Ind. Pharm. 2017, 43, 1103–1111. DOI: 10.1080/03639045.2017.1293679.
  • Milani, S.; Faghihi, H.; Roulholamini Najafabadi, A.; Amini, M.; Montazeri, H.; Vatanara, A. Hydroxypropyl Beta Cyclodextrin: A Water-Replacement Agent or a Surfactant upon Spray Freeze-Drying of IgG with Enhanced Stability and Aerosolization. Drug Dev. Ind. Pharm. 2020, 46, 403–411. DOI: 10.1080/03639045.2020.1724131.
  • Saluja, V.; Amorij, J.-P.; Kapteyn, J. C.; de Boer, A. H.; Frijlink, H. W.; Hinrichs, W. L. J. A Comparison between Spray Drying and Spray Freeze Drying to Produce an Influenza Subunit Vaccine Powder for Inhalation. J. Control. Release 2010, 144, 127–133. DOI: 10.1016/j.jconrel.2010.02.025.
  • Di, A.; Zhang, S.; Liu, X.; Tong, Z.; Sun, S.; Tang, Z.; Chen, X. D.; Wu, W. D. Microfluidic Spray Dried and Spray Freeze Dried Uniform Microparticles Potentially for Intranasal Drug Delivery and Controlled Release. Powder Technol. 2021, 379, 144–153. DOI: 10.1016/j.powtec.2020.10.061.
  • Serim, T. M.; Kožák, J.; Rautenberg, A.; Özdemir, A. N.; Pellequer, Y.; Lamprecht, A. Spray Freeze Dried Lyospheres® for Nasal Administration of Insulin. Pharmaceutics 2021, 13, 852. DOI: 10.3390/pharmaceutics13060852.
  • Adali, M. B.; Barresi, A.; Boccardo, G.; Montalbano, G.; Pisano, R. Ultrasonic Spray Freeze-Drying of Sucrose and Mannitol-Based Formulations: Impact of the Atomization Conditions on the Particle Morphology and Drying Performance. Dry. Technol. 2023, 41, 251–261. DOI: 10.1080/07373937.2021.2024844.
  • Mutukuri, T. T.; Darwish, A.; Strongrich, A. D.; Peroulis, D.; Alexeenko, A.; Zhou, Q. (. Radio Frequency - Assisted Ultrasonic Spray Freeze Drying for Pharmaceutical Protein Solids. J. Pharm. Sci. 2023, 112, 40–50. DOI: 10.1016/j.xphs.2022.09.024.
  • IMA Life. LYNFINITY: Continuous Aseptic Spray Freeze Drying. Process, Technology and Product Characterization. https://ima.it/pharma/paper/lynfinity-continuous-aseptic-spray-freeze-drying-process-technology-and-product-characterization/. (accessed Nov 11, 2023).
  • DeMarco, F. W.; Renzi, E. Bulk Freeze Drying Using Spray Freezing and Stirred Drying. US9052138B2, 2015.
  • Kankala, R. K.; Zhang, Y. S.; Wang, S.; Lee, C.; Chen, A. Supercritical Fluid Technology: An Emphasis on Drug Delivery and Related Biomedical Applications. Adv. Healthcare Materials 2017, 6, DOI: 10.1002/adhm.201700433.
  • Ray, A.; Dubey, K. K.; Marathe, S. J.; Singhal, R. Supercritical Fluid Extraction of Bioactives from Fruit Waste and Its Therapeutic Potential. Food Biosci. 2023, 52, 102418. DOI: 10.1016/j.fbio.2023.102418.
  • Marcus, Y. Some Advances in Supercritical Fluid Extraction for Fuels, Bio-Materials and Purification. Processes 2019, 7, 156. DOI: 10.3390/pr7030156.
  • Kankala, R.; Chen, B.-Q.; Liu, C.-G.; Tang, H.-X.; Wang, S.-B.; Chen, A.-Z. Solution-Enhanced Dispersion by Supercritical Fluids: An Ecofriendly Nanonization Approach for Processing Biomaterials and Pharmaceutical Compounds. Int. J. Nanomedicine. 2018, 13, 4227–4245. volume DOI: 10.2147/IJN.S166124.
  • Wilson, E. M.; Luft, J. C.; DeSimone, J. M. Formulation of High-Performance Dry Powder Aerosols for Pulmonary Protein Delivery. Pharm. Res. 2018, 35, 195. DOI: 10.1007/s11095-018-2452-z.
  • Misra, S. K.; Pathak, K. Supercritical Fluid Technology for Solubilization of Poorly Water Soluble Drugs via Micro- and Naonosized Particle Generation. Admet DMPK 2020, 8, 355–374. DOI: 10.5599/admet.811.
  • Chakravarty, P.; Famili, A.; Nagapudi, K.; Al-Sayah, M. A. Using Supercritical Fluid Technology as a Green Alternative during the Preparation of Drug Delivery Systems. Pharmaceutics 2019, 11, 629. DOI: 10.3390/pharmaceutics11120629.
  • Pyo, Y.-C.; Nguyen, T. N.; Lee, Y.-S.; Choi, Y.-E.; Park, J.-S. Design of Esomeprazole Solid Dispersion for Improved Dissolution and Bioavailability Using the Supercritical anti-Solvent Technique. J. Drug Deliv. Sci. Technol. 2023, 88, 104889. DOI: 10.1016/j.jddst.2023.104889.
  • Amidi, M.; Pellikaan, H. C.; de Boer, A. H.; Crommelin, D. J. A.; Hennink, W. E.; Jiskoot, W. Preparation and Physicochemical Characterization of Supercritically Dried Insulin-Loaded Microparticles for Pulmonary Delivery. Eur. J. Pharm. Biopharm. 2008, 68, 191–200. DOI: 10.1016/j.ejpb.2007.05.007.
  • Bouchard, A.; Jovanović, N.; Jiskoot, W.; Mendes, E.; Witkamp, G.-J.; Crommelin, D. J. A.; Hofland, G. W. Lysozyme Particle Formation during Supercritical Fluid Drying: Particle Morphology and Molecular Integrity. J. Supercrit. Fluids 2007, 40, 293–307. DOI: 10.1016/j.supflu.2006.07.005.
  • Yeo, S.; Lim, G.; Debendetti, P. G.; Bernstein, H. Formation of Microparticulate Protein Powder Using a Supercritical Fluid Antisolvent. Biotechnol. Bioeng. 1993, 41, 341–346. DOI: 10.1002/bit.260410308.
  • Jovanović, N.; Bouchard, A.; Hofland, G. W.; Witkamp, G.-J.; Crommelin, D. J. A.; Jiskoot, W. Distinct Effects of Sucrose and Trehalose on Protein Stability during Supercritical Fluid Drying and Freeze-Drying. Eur. J. Pharm. Sci. 2006, 27, 336–345. DOI: 10.1016/j.ejps.2005.11.003.
  • Sellers, S. P.; Clark, G. S.; Sievers, R. E.; Carpenter, J. F. Dry Powders of Stable Protein Formulations from Aqueous Solutions Prepared Using Supercritical CO2‐Assisted Aerosolization. J. Pharm. Sci. 2001, 90, 785–797. DOI: 10.1002/jps.1032.
  • Doukyu, N.; Ogino, H. Organic Solvent-Tolerant Enzymes. Biochem. Eng. J. 2010, 48, 270–282. DOI: 10.1016/j.bej.2009.09.009.
  • Cam, M. E.; Zhang, Y.; Edirisinghe, M. Electrosprayed Microparticles: A Novel Drug Delivery Method. Expert Opin. Drug Deliv. 2019, 16, 895–901. DOI: 10.1080/17425247.2019.1648427.
  • Nguyen, D. N.; Clasen, C.; Van den Mooter, G. Pharmaceutical Applications of Electrospraying. J. Pharm. Sci. 2016, 105, 2601–2620. DOI: 10.1016/j.xphs.2016.04.024.
  • Tanhaei, A.; Mohammadi, M.; Hamishehkar, H.; Hamblin, M. R. Electrospraying as a Novel Method of Particle Engineering for Drug Delivery Vehicles. J. Control. Release 2021, 330, 851–865. DOI: 10.1016/j.jconrel.2020.10.059.
  • Coelho, S. C.; Estevinho, B. N. A Brief Review on the Electrohydrodynamic Techniques Used to Build Antioxidant Delivery Systems from Natural Sources. Molecules 2023, 28, 3592. DOI: 10.3390/molecules28083592.
  • Zamani, M.; Prabhakaran, M. P.; Ramakrishna, S. Advances in Drug Delivery via Electrospun and Electrosprayed Nanomaterials. Int. J. Nanomedicine. 2013, 8, 2997–3017. DOI: 10.2147/IJN.S43575.
  • Zhao, T.; Zhang, J.; Gao, X.; Yuan, D.; Gu, Z.; Xu, Y. Electrospun Nanofibers for Bone Regeneration: From Biomimetic Composition, Structure to Function. J. Mater. Chem. B 2022, 10, 6078–6106. DOI: 10.1039/D2TB01182D.
  • Domján, J.; Vass, P.; Hirsch, E.; Szabó, E.; Pantea, E.; Andersen, S. K.; Vigh, T.; Verreck, G.; Marosi, G.; Nagy, Z. K. Monoclonal Antibody Formulation Manufactured by High-Speed Electrospinning. Int. J. Pharm. 2020, 591, 120042. DOI: 10.1016/j.ijpharm.2020.120042.
  • Niu, B.; Shao, P.; Luo, Y.; Sun, P. Recent Advances of Electrosprayed Particles as Encapsulation Systems of Bioactives for Food Application. Food Hydrocoll 2020, 99, 105376. DOI: 10.1016/j.foodhyd.2019.105376.
  • Liu, H.; Du, K.; Li, D.; Du, Y.; Xi, J.; Xu, Y.; Shen, Y.; Jiang, T.; Webster, T. J. A High Bioavailability and Sustained-Release Nano-Delivery System for Nintedanib Based on Electrospray Technology. Int. J. Nanomedicine. 2018, 13, 8379–8393. DOI: 10.2147/IJN.S181002.
  • Kim, W.; Kim, J. S.; Choi, H.-G.; Jin, S. G.; Cho, C.-W. Novel Ezetimibe-Loaded Fibrous Microparticles for Enhanced Solubility and Oral Bioavailability by Electrospray Technique. J. Drug Deliv. Sci. Technol. 2021, 66, 102877. DOI: 10.1016/j.jddst.2021.102877.
  • Durance, T.; Noorbakhsh, R.; Sandberg, G.; Sáenz‐Garza, N. Microwave Drying of Pharmaceuticals. In Drying Technologies for Biotechnology and Pharmaceutical Applications; Wiley: Hoboken, New Jersey, 2020; pp. 239–255. DOI: 10.1002/9783527802104.ch9.
  • Bhambhani, A.; Stanbro, J.; Roth, D.; Sullivan, E.; Jones, M.; Evans, R.; Blue, J. Evaluation of Microwave Vacuum Drying as an Alternative to Freeze-Drying of Biologics and Vaccines: The Power of Simple Modeling to Identify a Mechanism for Faster Drying Times Achieved with Microwave. AAPS PharmSciTech 2021, 22, 52. DOI: 10.1208/s12249-020-01912-9.
  • Ambros, S.; Mayer, R.; Schumann, B.; Kulozik, U. Microwave-Freeze Drying of Lactic Acid Bacteria: Influence of Process Parameters on Drying Behavior and Viability. Innov. Food Sci. Emerg. Technol. 2018, 48, 90–98. DOI: 10.1016/j.ifset.2018.05.020.
  • Gitter, J. H.; Geidobler, R.; Presser, I.; Winter, G. Microwave-Assisted Freeze-Drying of Monoclonal Antibodies: Product Quality Aspects and Storage Stability. Pharmaceutics 2019, 11, 674. DOI: 10.3390/pharmaceutics11120674.
  • Gitter, J. H.; Geidobler, R.; Presser, I.; Winter, G. Significant Drying Time Reduction Using Microwave-Assisted Freeze-Drying for a Monoclonal Antibody. J. Pharm. Sci. 2018, 107, 2538–2543. DOI: 10.1016/j.xphs.2018.05.023.
  • Härdter, N.; Geidobler, R.; Presser, I.; Winter, G. Accelerated Production of Biopharmaceuticals via Microwave-Assisted Freeze-Drying (MFD). Pharmaceutics 2023, 15, 1342. DOI: 10.3390/pharmaceutics15051342.
  • Jangle, R.; Pisal, S. Vacuum Foam Drying: An Alternative to Lyophilization for Biomolecule Preservation. Indian J. Pharm. Sci. 2012, 74, 91–100. DOI: 10.4103/0250-474X.103837.
  • Tristan Osanlóo, D.; Mahlin, D.; Bjerregaard, S.; Bergenståhl, B.; Millqvist-Fureby, A. Formulation Factors Affecting Foam Properties during Vacuum Foam-Drying. Int. J. Pharm. 2024, 652, 123803. DOI: 10.1016/j.ijpharm.2024.123803.
  • Harguindeguy, M.; Fissore, D. On the Effects of Freeze-Drying Processes on the Nutritional Properties of Foodstuff: A Review. Dry. Technol. 2020, 38, 846–868. DOI: 10.1080/07373937.2019.1599905.
  • Mensink, M. A.; Frijlink, H. W.; van der Voort Maarschalk, K.; Hinrichs, W. L. J. How Sugars Protect Proteins in the Solid State and during Drying (Review): Mechanisms of Stabilization in Relation to Stress Conditions. Eur. J. Pharm. Biopharm. 2017, 114, 288–295. DOI: 10.1016/j.ejpb.2017.01.024.
  • Patil, K. S.; Hajare, A. A.; Manjappa, A. S.; Dol, H. S. Vacuum Foam Drying of Docetaxel Mixed Micelles for Improved Stability and Ovarian Cancer Treatment. J. Drug Deliv. Sci. Technol 2023, 86, 104747. DOI: 10.1016/j.jddst.2023.104747.
  • Lovalenti, P. M.; Anderl, J.; Yee, L.; Nguyen, V.; Ghavami, B.; Ohtake, S.; Saxena, A.; Voss, T.; Truong-Le, V. Stabilization of Live Attenuated Influenza Vaccines by Freeze Drying, Spray Drying, and Foam Drying. Pharm. Res. 2016, 33, 1144–1160. DOI: 10.1007/s11095-016-1860-1.
  • Lyu, F.; Zhao, Y.; Lu, Y.; Zuo, X.; Deng, B.; Zeng, M.; Wang, J.; Olaniran, A.; Hou, J.; Khoza, T. Vacuum Foam Drying Method Improved the Thermal Stability and Long-Term Shelf Life of a Live Attenuated Newcastle Disease Virus Vaccine. AAPS PharmSciTech 2022, 23, 291. DOI: 10.1208/s12249-022-02440-4.
  • Abdul-Fattah, A. M.; Truong-Le, V.; Yee, L.; Pan, E.; Ao, Y.; Kalonia, D. S.; Pikal, M. J. Drying-Induced Variations in Physico-Chemical Properties of Amorphous Pharmaceuticals and Their Impact on Stability II: Stability of a Vaccine. Pharm. Res. 2007, 24, 715–727. DOI: 10.1007/s11095-006-9191-2.
  • Suzuki, H.; Moritani, T.; Morinaga, T.; Seto, Y.; Sato, H.; Onoue, S. Amorphous Solid Dispersion of Cyclosporine a Prepared with Fine Droplet Drying Process: Physicochemical and Pharmacokinetic Characterization. Int. J. Pharm. 2017, 519, 213–219. DOI: 10.1016/j.ijpharm.2017.01.018.
  • Moritani, T.; Usui, H.; Morinaga, T.; Sato, H.; Onoue, S. Cyclosporine A-Loaded Ternary Solid Dispersion Prepared with Fine Droplet Drying Process for Improvement of Storage Stability and Oral Bioavailability. Pharmaceutics 2023, 15, 571. DOI: 10.3390/pharmaceutics15020571.
  • Moritani, T.; Kaneko, Y.; Morinaga, T.; Ohtake, H.; Seto, Y.; Sato, H.; Onoue, S. Tranilast-Loaded Amorphous Solid Dispersion Prepared with Fine Droplet Drying Process for Improvement of Oral Absorption and anti-Inflammatory Effects on Chemically-Induced Colitis. J. Drug Deliv. Sci. Technol. 2021, 64, 102544. DOI: 10.1016/j.jddst.2021.102544.
  • Sato, H.; Tabata, A.; Moritani, T.; Morinaga, T.; Mizumoto, T.; Seto, Y.; Onoue, S. Design and Characterizations of Inhalable Poly(Lactic-Co-Glycolic Acid) Microspheres Prepared by the Fine Droplet Drying Process for a Sustained Effect of Salmon Calcitonin. Molecules 2020, 27, 1311. DOI: 10.3390/molecules25061311.
  • Fiedler, D.; Alva, C.; Pinto, J. T.; Spoerk, M.; Jeitler, R.; Roblegg, E. In-Vial Printing and Drying of Biologics as a Personalizable Approach. Int. J. Pharm. 2022, 623, 121909. DOI: 10.1016/j.ijpharm.2022.121909.
  • Roscigno, R.; Vaughn, T.; Anderson, S.; Wargin, W.; Hunt, T.; Hill, N. S. Pharmacokinetics and Tolerability of LIQ861, a Novel Dry‐Powder Formulation of Treprostinil. Pulm. Circ. 2020, 10, 2045894020971509–2045894020971509. DOI: 10.1177/2045894020971509.
  • Poozesh, S.; Mezhericher, M.; Pan, Z.; Chaudhary, U.; Manikwar, P.; Stone, H. A. Rapid Room-Temperature Aerosol Dehydration versus Spray Drying: A Novel Paradigm in Biopharmaceutical Drying Technologies. J. Pharm. Sci. 2023, 113, 974–981. DOI: 10.1016/j.xphs.2023.10.003.
  • Patil, A.; Pardeshi, S.; Kapase, M.; Patil, P.; More, M.; Dhole, S.; Kole, E.; Deshmukh, P.; Gholap, A.; Mujumdar, A.; et al. Continuous Preparation of Sustained Release Vildagliptin Nanoparticles Using Tubular Microreactor Approach. Dry. Technol. 2024, 42, 661–673. DOI: 10.1080/07373937.2023.2298778.
  • Gaul, David A, Rickard, Deborah L, Needham, David, Aniket, MicroglassificationTM: A Novel Technique for Protein Dehydration.J Pharm Sci., 2014, 103 (3), 810–820. DOI: 10.1002/jps.23847.
  • Su, J. T.; Duncan, P. B.; Momaya, A.; Jutila, A.; Needham, D. The Effect of Hydrogen Bonding on the Diffusion of Water in N-Alkanes and n-Alcohols Measured with a Novel Single Microdroplet Method. J. Chem. Phys. 2010, 132, 044506. DOI: 10.1063/1.3298857.
  • Zhang, Y.; Abatzoglou, N. Review: Fundamentals, Applications and Potentials of Ultrasound-Assisted Drying. Chem. Eng. Res. Des. 2020, 154, 21–46. DOI: 10.1016/j.cherd.2019.11.025.
  • Pisano, R.; Arsiccio, A.; Nakagawa, K.; Barresi, A. A. Tuning, Measurement and Prediction of the Impact of Freezing on Product Morphology: A Step toward Improved Design of Freeze-Drying Cycles. Dry. Technol 2019, 37, 579–599. DOI: 10.1080/07373937.2018.1528451.
  • Leu, L.; Yen, Y. S. Effect of Sound on the Fluidization of Group B Particles. Can. J. Chem. Eng. 1999, 77, 1215–1220. DOI: 10.1002/cjce.5450770618.
  • Zhu, X.; Zhang, Z.; Hinds, L. M.; Sun, D.-W.; Tiwari, B. K. Applications of Ultrasound to Enhance Fluidized Bed Drying of Ascophyllum Nodosum: Drying Kinetics and Product Quality Assessment. Ultrason. Sonochem. 2021, 70, 105298. DOI: 10.1016/j.ultsonch.2020.105298.
  • Huang, W.; Huang, D.; Qin, Y.; Zhang, Y.; Lu, Y.; Huang, S.; Gong, G. Ultrasound‐Assisted Hot Air Drying Characteristics of Phyllanthus Emblica. J. Food Process Eng. 2023, 46, e14286. DOI: 10.1111/jfpe.14286.
  • Bjelošević, M.; Zvonar Pobirk, A.; Planinšek, O.; Ahlin Grabnar, P. Excipients in Freeze-Dried Biopharmaceuticals: Contributions toward Formulation Stability and Lyophilisation Cycle Optimisation. Int. J. Pharm. 2020, 576, 119029. DOI: 10.1016/j.ijpharm.2020.119029.
  • Wu, C.; Shamblin, S.; Varshney, D.; Shalaev, E. Advance Understanding of Buffer Behavior during Lyophilization. Lyophilized Biologics and Vaccines; Springer New York: New York, NY, 2015; pp 25–41. DOI: 10.1007/978-1-4939-2383-0_3.
  • Pinto, J. T.; Faulhammer, E.; Dieplinger, J.; Dekner, M.; Makert, C.; Nieder, M.; Paudel, A. Progress in Spray-Drying of Protein Pharmaceuticals: Literature Analysis of Trends in Formulation and Process Attributes. Dry. Technol. 2021, 39, 1415–1446. DOI: 10.1080/07373937.2021.1903032.
  • Massant, J.; Fleurime, S.; Batens, M.; Vanhaerents, H.; Van den Mooter, G. Formulating Monoclonal Antibodies as Powders for Reconstitution at High Concentration Using Spray-Drying: Trehalose/Amino Acid Combinations as Reconstitution Time Reducing and Stability Improving Formulations. Eur. J. Pharm. Biopharm. 2020, 156, 131–142. DOI: 10.1016/j.ejpb.2020.08.019.
  • Starciuc, T.; Tabary, N.; Paccou, L.; Duponchel, L.; Guinet, Y.; Martel, B.; Hédoux, A. A Detailed Analysis of the Influence of β-Cyclodextrin Derivates on the Thermal Denaturation of Lysozyme. Int. J. Pharm. 2019, 554, 1–13. DOI: 10.1016/j.ijpharm.2018.10.060.
  • Ji, S.; Thulstrup, P. W.; Mu, H.; Hansen, S. H.; van de Weert, M.; Rantanen, J.; Yang, M. Effect of Ethanol as a Co-Solvent on the Aerosol Performance and Stability of Spray-Dried Lysozyme. Int. J. Pharm. 2016, 513, 175–182. DOI: 10.1016/j.ijpharm.2016.09.025.
  • Peters, B.-H.; Staels, L.; Rantanen, J.; Molnár, F.; De Beer, T.; Lehto, V.-P.; Ketolainen, J. Effects of Cooling Rate in Microscale and Pilot Scale Freeze-Drying—Variations in Excipient Polymorphs and Protein Secondary Structure. Eur. J. Pharm. Sci. 2016, 95, 72–81. DOI: 10.1016/j.ejps.2016.05.020.
  • Kulkarni, S. S.; Suryanarayanan, R.; Rinella, J. V.; Bogner, R. H. Mechanisms by Which Crystalline Mannitol Improves the Reconstitution Time of High Concentration Lyophilized Protein Formulations. Eur. J. Pharm. Biopharm. 2018, 131, 70–81. DOI: 10.1016/j.ejpb.2018.07.022.
  • Wilson, N. E.; Topp, E. M.; Zhou, Q. T. Effects of Drying Method and Excipient on Structure and Stability of Protein Solids Using Solid-State Hydrogen/Deuterium Exchange Mass Spectrometry (SsHDX-MS). Int. J. Pharm. 2019, 567, 118470. DOI: 10.1016/j.ijpharm.2019.118470.
  • Dani, B.; Platz, R.; Tzannis, S. T. High Concentration Formulation Feasibility of Human Immunoglubulin G for Subcutaneous Administration. J. Pharm. Sci. 2007, 96, 1504–1517. DOI: 10.1002/jps.20508.
  • Bowen, M.; Turok, R.; Maa, Y.-F. Spray Drying of Monoclonal Antibodies: Investigating Powder-Based Biologic Drug Substance Bulk Storage. Dry. Technol. 2013, 31, 1441–1450. DOI: 10.1080/07373937.2013.796968.
  • Chaurasiya, B.; Zhao, Y.-Y. Dry Powder for Pulmonary Delivery: A Comprehensive Review. Pharmaceutics 2020, 13, 31. DOI: 10.3390/pharmaceutics13010031.
  • Stärtzel, P. Arginine as an Excipient for Protein Freeze-Drying: A Mini Review. J. Pharm. Sci. 2018, 107, 960–967. DOI: 10.1016/j.xphs.2017.11.015.
  • Reslan, M.; Demir, Y. K.; Trout, B. L.; Chan, H.-K.; Kayser, V. Lack of a Synergistic Effect of Arginine–Glutamic Acid on the Physical Stability of Spray-Dried Bovine Serum Albumin. Pharm. Dev. Technol. 2017, 22, 785–791. DOI: 10.1080/10837450.2016.1185116.
  • Ajmera, A.; Scherließ, R. Stabilisation of Proteins via Mixtures of Amino Acids during Spray Drying. Int. J. Pharm. 2014, 463, 98–107. DOI: 10.1016/j.ijpharm.2014.01.002.
  • Wang, W.; Singh, S.; Zeng, D. L.; King, K.; Nema, S. Antibody Structure, Instability, and Formulation. J. Pharm. Sci. 2007, 96, 1–26. DOI: 10.1002/jps.20727.
  • Tian, F.; Sane, S.; Rytting, J. H. Calorimetric Investigation of Protein/Amino Acid Interactions in the Solid State. Int. J. Pharm. 2006, 310, 175–186. DOI: 10.1016/j.ijpharm.2005.12.009.
  • King, T. E.; Humphrey, J. R.; Laughton, C. A.; Thomas, N. R.; Hirst, J. D. Optimizing Excipient Properties to Prevent Aggregation in Biopharmaceutical Formulations. J. Chem. Inf. Model. 2024, 64, 265–275. DOI: 10.1021/acs.jcim.3c01898.
  • Liao, Y.-H.; Brown, M. B.; Martin, G. P. Investigation of the Stabilisation of Freeze-Dried Lysozyme and the Physical Properties of the Formulations. Eur. J. Pharm. Biopharm. 2004, 58, 15–24. DOI: 10.1016/j.ejpb.2004.03.020.
  • Chang, L(.; M. J.; Lucy); Pikal. Mechanisms of Protein Stabilization in the Solid State. J. Pharm. Sci. 2009, 98, 2886–2908. DOI: 10.1002/jps.21825.
  • Brytan, W.; Padrela, L. Structural Modifications for the Conversion of Proteins and Peptides into Stable Dried Powder Formulations: A Review. J. Drug Deliv. Sci. Technol. 2023, 89, 104992. DOI: 10.1016/j.jddst.2023.104992.
  • Administration, F. and D. Guidance for Industry. PAT-A Framework for Innovative Pharmaceutical Development, Manufacturing and Quality Assurance. 2004, No. September.
  • Kasper, J. C.; Wiggenhorn, M.; Resch, M.; Friess, W. Implementation and Evaluation of an Optical Fiber System as Novel Process Monitoring Tool during Lyophilization. Eur. J. Pharm. Biopharm. 2013, 83, 449–459. DOI: 10.1016/j.ejpb.2012.10.009.
  • Ellab. TrackSense® Pro Wireless Data Loggers. https://www.ellab.com/solutions/wireless-data-loggers/tracksense-pro-data-logger/.
  • Schneid, S. C.; Gieseler, H.; Kessler, W. J.; Luthra, S. A.; Pikal, M. J. Optimization of the Secondary Drying Step in Freeze Drying Using TDLAS Technology. AAPS PharmSciTech. 2011, 12, 379–387. DOI: 10.1208/s12249-011-9600-7.
  • Nitika, N.; Chhabra, H.; Rathore, A. S. Raman Spectroscopy for in Situ, Real Time Monitoring of Protein Aggregation in Lyophilized Biotherapeutic Products. Int. J. Biol. Macromol. 2021, 179, 309–313. DOI: 10.1016/j.ijbiomac.2021.02.214.
  • Pieters, S.; De Beer, T.; Kasper, J. C.; Boulpaep, D.; Waszkiewicz, O.; Goodarzi, M.; Tistaert, C.; Friess, W.; Remon, J.-P.; Vervaet, C.; et al. Near-Infrared Spectroscopy for in-Line Monitoring of Protein Unfolding and Its Interactions with Lyoprotectants during Freeze-Drying. Anal. Chem. 2012, 84, 947–955. DOI: 10.1021/ac2022184.
  • Silva, A. F. T.; Burggraeve, A.; Denon, Q.; Van der Meeren, P.; Sandler, N.; Van Den Kerkhof, T.; Hellings, M.; Vervaet, C.; Remon, J. P.; Lopes, J. A.; et al. Particle Sizing Measurements in Pharmaceutical Applications: Comparison of in-Process Methods versus off-Line Methods. Eur. J. Pharm. Biopharm. 2013, 85, 1006–1018. DOI: 10.1016/j.ejpb.2013.03.032.
  • Chan, L. W.; Tan, L. H.; Heng, P. W. S. Process Analytical Technology: Application to Particle Sizing in Spray Drying. AAPS PharmSciTech 2008, 9, 259–266. DOI: 10.1208/s12249-007-9011-y.
  • Stamato, H.; Searles, J. Challenges and Considerations for New Technology Implementation and Synergy with Development of Process Analytical Technologies (PAT). Drying Technologies for Biotechnology and Pharmaceutical Applications; Wiley: Hoboken, New Jersey, 2020; pp347–354 DOI: 10.1002/9783527802104.ch14.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.