Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 9
524
Views
0
CrossRef citations to date
0
Altmetric
Review Articles

High temperature drying of sawn timber—A review

ORCID Icon, ORCID Icon, & ORCID Icon
Pages 1397-1414 | Received 16 Apr 2024, Accepted 05 Jun 2024, Published online: 22 Jun 2024

References

  • Niemz, P.; Teischinger, A.; Sandberg, D., Eds. Springer Handbook of Wood Science and Technology; Springer: Heidelberg, Germany, 2023.
  • Andersson, J.-E.; Lycken, A.; Nordman, R.; Olsson, M.; Räftegård, O.; Wamming, T. State of the Art–Energianvändning I Den Svenska Sågverksindustrin; SP Technical Research Institute of Sweden, 2011.
  • Couceiro, J. X-Ray Computed Tomography to Study Moisture Distribution in Wood; Doctoral dissertation, Luleå Tekniska Universite, 2019.
  • Hosseini, S. M.; Peer, A. Wood Products Manufacturing Optimization: A Survey. IEEE Access 2022, 10, 121653–121683. DOI: 10.1109/ACCESS.2022.3223053.
  • Burke, J.; Goriss-Hunter, A.; Emmett, S. Policy, Discourse and Epistemology in Inclusive Education. In Inclusion, Equity, Diversity, and Social Justice in Education: A Critical Exploration of the Sustainable Development Goals; Springer Nature Singapore: Singapore, 2023; pp 13–27. DOI: 10.1007/978-981-19-5008-7_2.
  • Engström, R. E.; Destouni, G.; Howells, M.; Ramaswamy, V.; Rogner, H.; Bazilian, M. Cross-Scale Water and Land Impacts of Local Climate and Energy Policy—A Local Swedish Analysis of Selected SDG Interactions. Sustainability 2019, 11, 1847. DOI: 10.3390/su11071847.
  • Dmytrów, K.; Bieszk-Stolorz, B.; Landmesser-Rusek, J. Sustainable Energy in European Countries: Analysis of Sustainable Development Goal 7 Using the Dynamic Time Warping Method. Energies 2022, 15, 7756. DOI: 10.3390/en15207756.
  • Smith, J. Apparatus Drying and Sbasoning Lumber; Google Patents-USA, 1867.
  • Haslett, A. Drying Radiata Pine in New Zealand; New Zealand Forest Research Institute: Rotorua, 1998.
  • Stenström, S. Drying of Biofuels from the Forest—A Review. Drying Technol. 2017, 35, 1167–1181. DOI: 10.1080/07373937.2016.1258571.
  • Liu, M.; Xu, C.; Han, X.; Liu, R.; Qin, Y.; Yan, J. Integration of Evaporative Dryers into Lignite-Fired Power Plants: A Review. Drying Technol. 2020, 38, 1996–2014. DOI: 10.1080/07373937.2019.1606824.
  • Kollmann, F. F.; Cote, W. A. Principles of Wood Science and Technology. Volume I: Solid Wood; Springer-Verlag: Berlin, 1984.
  • Babiak, M.; Kúdela, J. A Contribution to the Definition of the Fiber Saturation Point. Wood Sci. Technol. 1995, 29, 217–226. DOI: 10.1007/BF00204589.
  • Konopka, A.; Baranski, J.; Hurakova, T.; Klement, I. The Influence of High Temperature Wood Drying Conditions Using Air-Steam Mixture on Its Properties. Ann. Warsaw Univ. Life Sci. SGGW For. Wood Technol. 2015, 90, 107–114.
  • Simpson, W. T.; Rosen, H. N. Equilibrium Moisture Content of Wood at High Temperatures. Wood Fiber Sci. 1981, 13, 150–158.
  • Thompson, W. S.; Stevens, R. R. Influence of Thermal Treatments on the Mechanical and Chemical Properties of Wood: A Review of Research at the Mississippi Forest Products Laboratory. Proceedings of Research Conference on High-Temperature Drying Effects on Mechanical Properties of Softwood Lumber; Department of Agriculture, Forest Service, Forest Products Laboratory, 1976; p 9.
  • Terziev, N.; Daniel, G. Industrial Kiln Drying and Its Effect on Microstructure, Impregnation and Properties of Scots Pine Timber Impregnated for above Ground Use. Part 2. Effect of Drying on Microstructure and Some Mechanical Properties of Scots Pine Wood. Holzforschung 2002, 56, 434–439.
  • Booker, R.; Evans, J. The Effect of Drying Schedule on the Radial Permeability of Pinus radiata D. Holz als Roh- und Werkstoff, 1994, 52, 150-156. DOI: 10.5555/19940607361.
  • Leggate, W.; Kumar, C.; McGavin, R. L.; Faircloth, A.; Knackstedt, M. The Effects of Drying Method on the Wood Permeability, Wettability, Treatability, and Gluability of Southern Pine from Australia. BioResources 2020, 16, 698–720. DOI: 10.15376/biores.16.1.698-720.
  • Comstock, G.; Côté Jr, W. Factors Affecting Permeability and Pit Aspiration in Coniferous Sapwood. Wood Sci. Technol. 1968, 2, 279–291. DOI: 10.1007/BF00350274.
  • Koch, P.; Wellford, W. L. Some Mechanical Properties of Small Specimens Cut from 1.79-Inch-Thick Southern Pine Dried for 6 Hours at 300 F or for 5 Days at 180 Fa Comparison. Wood Fiber Sci. 1977, 8, 235–240.
  • Cai, L.; Oliveira, L. C. Experimental Evaluation and Modeling of High Temperature Drying of Sub-Alpine Fir. Wood Sci. Technol. 2010, 44, 243–252. DOI: 10.1007/s00226-009-0280-3.
  • Cech, M. Y.; Huffman, D. R. High-Temperature Drying of Mixed Spruce, Jack Pine, and Bals Am Fir. Publ. Dep. Environ. Can. For. Serv. 1974, 1337, 1-15. DOI: 10.5555/19740618752.
  • McNaught, A. M.; Gough, D. K. Drying 40-Mm-Thick Slash Pine in 2.5 Hours at 200 °C. For. Prod. J. 1995, 45, 51.
  • Elustondo, D.; Ahmed, S.; Oliveira, L. Drying Western Red Cedar with Superheated Steam. Drying Technol. 2014, 32, 550–556. DOI: 10.1080/07373937.2013.843190.
  • Sandberg, D.; Kutnar, A.; Karlsson, O.; Jones, D. Wood Modification Technologies: Principles, Sustainability, and the Need for Innovation; CRC Press, 2021.
  • Frühwald, E. Effect of High-Temperature Drying on Properties of Norway Spruce and Larch. Holz als Roh-und Werkstoff 2007, 65, 411–418.
  • Konopka, A.; Barański, J. The Dying Medium Temperature Impact on the Final Moisture Content of Pine Wood at Constant Drying Time. Ann. Warsaw Univ. Life Sci. SGGW For. Wood Technol. 2016, 95, 91–96.
  • Schneider, A. Untersuchungen Uber Den Einfluss Der Feuchttemperatur Auf Den Verlauf Der Hochtemperaturtrocknung Von Schnittholz. Holz als Roh-und Werkstoff 1981, 39, 379–387. DOI: 10.1007/BF02606450.
  • Borrega, M.; Kärenlampi, P. P. Three Mechanisms Affecting the Mechanical Properties of Spruce Wood Dried at High Temperatures. J. Wood Sci. 2010, 56, 87–94. DOI: 10.1007/s10086-009-1076-7.
  • Hansson, L.; Antti, A. The Effect of Microwave Drying on Norway Spruce Woods Strength: A Comparison with Conventional Drying. J. Mater. Process. Technol. 2003, 141, 41–50. DOI: 10.1016/S0924-0136(02)01102-0.
  • Kerr, C. Nz Radiata Pine Users Manual; New Zealand Institute of Forestry: New Zealand, 1996.
  • McCurdy, M. C. Efficient Kiln Drying of Quality Softwood Timber; PhD thesis, Chemical and Process Engineering to the University of Canterbury, 2006.
  • Deutschlander, H. M.; Wagner, F. G.; Folk, R. L.; Shook, S. R.; Everson, D. O.; Association, W. D. K. Impacts of High-Temperature and Restraint on Kiln-Dried Grand Fir Studs Curve Sawn from Small-Diameter Logs; Moscow, Idaho: Western Dry Kiln Association, 2006.
  • Boone, R. S. Kiln Drying 4/4 American Elm and Sweetgum Lumber with a Combination of Conventional-Temperature and High-Temperature Schedules; US Department of Agriculture, Forest Service, Forest Products Laboratory, 1989; Vol. 491.
  • Klement, I.; Huráková, T. Determining the Influence of Sample Thickness on the High-Temperature Drying of Beech Wood (Fagus sylvatica L.). BioResources 2016, 11, 5424–5434. DOI: 10.15376/biores.11.2.5424-5434.
  • Ananias, R. A.; Ulloa, J.; Elustondo, D. M.; Salinas, C.; Rebolledo, P.; Fuentes, C. Energy Consumption in Industrial Drying of Radiata Pine. Drying Technol. 2012, 30, 774–779. DOI: 10.1080/07373937.2012.663029.
  • Garrahan, P.; Lavoie, V.; Elustondo, D. Element 5: Application of Rapid Drying Technologies to Streamline the Lumber Manufacturing Process Applying Rapid Drying Technologies to Canadian Spf Lumber; FPInnovations: Canada, 2011.
  • Yamsaengsung, R.; Tabtiang, S. Hybrid Drying of Rubberwood Using Superheated Steam and Hot Air in a Pilot-Scale. Drying Technol. 2011, 29, 1170–1178. DOI: 10.1080/07373937.2011.574805.
  • Thiam, M.; Milota, M. R.; Leichti, R. J. Effect of High-Temperature Drying on Bending and Shear Strengths of Western Hemlock Lumber. For. Prod. J. 2002, 52, 64–68.
  • Cai, L.; Oliveira, L. C. Impact of High-Temperature Schedules on Drying of Spruce and Pine. Drying Technol. 2008, 26, 1160–1164. DOI: 10.1080/07373930802266280.
  • Chanpet, M.; Rakmak, N.; Matan, N.; Siripatana, C. Effect of Air Velocity, Temperature, and Relative Humidity on Drying Kinetics of Rubberwood. Heliyon 2020, 6, e05151. DOI: 10.1016/j.heliyon.2020.e05151.
  • Theppaya, T.; Prasertsan, S. Optimization of Rubber Wood Drying by Response Surface Method and Multiple Contour Plots. Drying Technol. 2004, 22, 1637–1660. DOI: 10.1081/DRT-200025622.
  • Koch, P. Strength of Southern Pine Lumber Dried at High Temperatures. Proceedings of the Research Conference on High‐Temperature Drying Effects on Mechanical Properties of Softwood Lumber, 1976; pp 38–49.
  • Gilmore, R. Summary of Work on High Temperature Drying at North Carolina State University. Proceedings of the Research Conference on High Temperature Drying Effects on Mechanical Properties of Softwood Lumber, 1976.
  • Troxell, H. E.; Luza, M. P. High-Temperature Drying Properties of Lodgepole Pine Studs; College of Forestry and Natural Resources Colorado State University: Fort Collins, Colorado, 1972.
  • Khamtree, S.; Ratanawilai, T.; Nuntadusit, C. An Approach for Indirect Monitoring of Moisture Content in Rubberwood (Hevea brasiliensis) during Hot Air Drying. Drying Technol. 2019, 37, 2116–2125. DOI: 10.1080/07373937.2018.1563901.
  • Baranski, J. Moisture Content during and after High-and Normal-Temperature Drying Processes of Wood. Drying Technol. 2018, 36, 751–761. DOI: 10.1080/07373937.2017.1355319.
  • Milota, M. R. Warp and Shrinkage of Hem-Fir Stud Lumber Dried at Conventional and High Temperatures. For. Prod. J. 2000, 50, 79-84.
  • Bovornset, S.; Wongwises, S. Drying Parawood with Superheated Steam. Am. J. Appl. Sci. 2007, 4, 215–219. DOI: 10.3844/ajassp.2007.215.219.
  • Basilico, C.; Genevaux, J.; Martin, M. High Temperature Drying of Wood Semi-Industrial Kiln Experiments. Drying Technol. 1990, 8, 751–765. DOI: 10.1080/07373939008959913.
  • Bootle, K. R. Wood in Australia. Types, Properties and Uses; McGraw-Hill Book Company: Sydney, 1983.
  • Boone, R. High-Temperature Kiln-Drying of 4/4 Lumber from 12 Hardwood Species. For. Prod. J. 1984, 34, 10–18.
  • Alverez Noves, H.; Fernandez-Golfin Seco, J. I. Practical Evaluation and Operation of Superheated Steam Drying Process with Different Softwoods and Hardwoods. Holz als Roh-und Werkstoff 1994, 52, 135–138. DOI: 10.1007/BF02615209.
  • Jomaa, W.; Baixeras, O. Discontinuous Vacuum Drying of Oak Wood: Modelling and Experimental Investigations. Drying Technol. 1997, 15, 2129–2144. DOI: 10.1080/07373939708917355.
  • Pang, S.; Haslett, A. The Application of Mathematical Models to the Commercial High-Temperature Drying of Softwood Lumber. Drying Technol. 1995, 13, 1635–1674. DOI: 10.1080/07373939508917045.
  • Pang, S. Some Considerations in Simulation of Superheated Steam Drying of Softwood Lumber. Drying Technol. 1997, 15, 651–670. DOI: 10.1080/07373939708917252.
  • Nijdam, J.; Langrish, T.; Keey, R. A High-Temperature Drying Model for Softwood Timber. Chem. Eng. Sci. 2000, 55, 3585–3598. DOI: 10.1016/S0009-2509(00)00042-7.
  • Hukka, A. Evaluation of Parameter Values for a High-Temperature Drying Simulation Model Using Direct Drying Experiments. Drying Technol. 1997, 15, 1213–1229. DOI: 10.1080/07373939708917288.
  • Haque, M. Analysis of Heat and Mass Transfer during High-Temperature Drying of Pinus radiata. Drying Technol. 2007, 25, 379–389. DOI: 10.1080/07373930601184551.
  • Nabhani, M.; Laghdir, A.; Fortin, Y. Simulation of High-Temperature Drying of Wood. Drying Technol. 2010, 28, 1142–1147. DOI: 10.1080/07373937.2010.483563.
  • Milota, M. Corrim Report: Module B Life Cycle Assessment for the Production of Pacific Northwest Softwood Lumber; Oregon State University: Corvallis, OR, 2015.
  • Taylor, F. W. A Comparison of Energy Requirements for Kiln-Drying Southern Pine at Different Drying Temperatures. Wood Fiber Sci. 1982, 14, 246–253.
  • Mujumdar, A. S. Handbook of Industrial Drying; CRC Press: Boca Raton, 2006.
  • Anderson, J.-O.; Toffolo, A. Improving Energy Efficiency of Sawmill Industrial Sites by Integration with Pellet and CHP Plants. Appl. Energy 2013, 111, 791–800. DOI: 10.1016/j.apenergy.2013.05.066.
  • Andersson, J.-O.; Westerlund, L. Mind Based Optimisation and Energy Analysis of a Sawmill Production Line. Conference on Process Integration, Modelling and Optimisation for Energy Saving and Pollution Reduction: 28/08/2010-01/09/2010; 2010; pp 1–5.
  • Salin, J.-G. Determination of the Most Economical Drying Schedule and Air Velocity in Softwood Drying; AB Trätek, Swedish Institute for Wood Technology Research: Stockholm, Sweden, 2001.
  • Wu, J.; Milota, M. R. Effect of Temperature and Humidity on Total Hydrocarbon Emissions from Douglas-Fir Lumber. For. Prod. J. 1999, 49, 52.
  • Ingram, L. L. Jr.; Templeton, M. C.; McGraw, G. W.; Hemingway, R. W. Knot, Heartwood, and Sapwood Extractives Related to VOCs from Drying Southern Pine Lumber. J. Wood Chem. Technol. 2000, 20, 415–439. DOI: 10.1080/02773810009351892.
  • McDonald, A.; Gifford, J.; Steward, D.; Dare, P.; Riley, S.; Simpson, I. Air Emission from Timber Drying: High Temperature Drying and Re-Drying of CCA Treated Timber. Eur. J. Wood Wood Prod. 2004, 62, 291–302.
  • Milota, M. R.; Wu, J.; Association, W. D. K. Changes in the VOC Emissions from Douglas-Fir Lumber with Temperature and Humidity; Oregon State University Corvallis, Oregon, Western Dry Kiln Association, 1997.
  • Otwell, L. P.; Hittmeier, M. E.; Hooda, U.; Yan, H.; Su, W.; Banerjee, S. Haps Release from Wood Drying. Environ. Sci. Technol. 2000, 34, 2280–2283. DOI: 10.1021/es991083q.
  • Hyttinen, M.; Masalin-Weijo, M.; Kalliokoski, P.; Pasanen, P. Comparison of VOC Emissions between Air-Dried and Heat-Treated Norway Spruce (Picea abies), Scots Pine (Pinus sylvesteris) and European Aspen (Populus tremula) Wood. Atmos. Environ. 2010, 44, 5028–5033. DOI: 10.1016/j.atmosenv.2010.07.018.
  • Ingram, L.; Taylor, F.; Templeton, M. Volatile Organic Compound Emissions from Southern Pine Kilns. Proceedings of the Drying Pacific Northwest Species for Quality Markets, 1996; pp 41–45.
  • McDonald, A.; Wastney, S. Analysis of Volatile Emissions from Kiln Drying of Radiata Pine. Proceedings of the 8th International Symposium on Wood and Pulping Chemistry, 1995; pp 434–436.
  • Englund, F.; Nussbaum, R. M. Monoterpenes in Scots Pine and Norway Spruce and Their Emission during Kiln Drying; Holzforschung: Germany, 2000.
  • Milota, M. R. HAP and VOC Emissions from White Fir Lumber Dried at High and Conventional Temperatures. For. Prod. J. 2003, 53, 60.
  • Milota, M. R. Hazardous Air Pollutant Emissions from Lumber Drying. For. Prod. J. 2006, 56, 79.
  • Milota, M. R.; Mosher, P. Emissions from Western Hemlock Lumber during Drying. For. Prod. J. 2006, 56, 66.
  • Dahlen, J.; Shmulsky, R.; Jones, D. Volatile Organic Compounds Emitted during the Kiln Drying of Southern Pine Utility Poles. For. Prod. J. 2010, 60, 629–631. DOI: 10.13073/0015-7473-60.7.629.
  • Skaar, C. Wood-Water Relations; Springer: Berlin, Heidelberg, 2012.
  • Zhou, F.; Fu, Z.; Zhou, Y.; Zhao, J.; Gao, X.; Jiang, J. Moisture Transfer and Stress Development during High-Temperature Drying of Chinese Fir. Drying Technol. 2019, 38, 545–554. DOI: 10.1080/07373937.2019.1588900.
  • Torniainen, P.; Popescu, C.-M.; Jones, D.; Scharf, A.; Sandberg, D. Correlation of Studies between Colour, Structure and Mechanical Properties of Commercially Produced Thermowood® Treated Norway Spruce and Scots Pine. Forests 2021, 12, 1165. DOI: 10.3390/f12091165.
  • Boonstra, M. J.; Tjeerdsma, B. Chemical Analysis of Heat Treated Softwoods. Holz als Roh-und Werkstoff 2006, 64, 204–211.
  • Klement, I.; Marko, P. Colour Changes of Beech Wood (Fagus sylvatica L.) during High Temperature Drying Process. Wood Res. 2009, 54, 45–54.
  • Dagbro, O.; Torniainen, P.; Karlsson, O.; Morén, T. Colour Responses from Wood, Thermally Modified in Superheated Steam and Pressurized Steam Atmospheres. Wood Mater. Sci. Eng. 2010, 5, 211–219. DOI: 10.1080/17480272.2010.520739.
  • Cheng, W.; Morooka, T.; Wu, Q.; Liu, Y. Characterization of Tangential Shrinkage Stresses of Wood during Drying under Superheated Steam above 100 C. For. Prod. J. 2007, 57, 39.
  • Shahverdi, M.; Eshaghi, S.; Gholamiyan, H.; Haji Mirza Tayeb, S. Effect of Wood Drying Conditions on Occurrence of Collapse during Drying. Proceedings of 53rd International Convention of Society of Wood Science and Technology, October, 2010; pp 11–14.
  • Kowalski, S. J.; Molinski, W.; Musielak, G. The Identification of Fracture in Dried Wood Based on Theoretical Modelling and Acoustic Emission. Wood Sci. Technol. 2004, 38, 35–52. DOI: 10.1007/s00226-003-0211-7.
  • Nasir, V.; Ayanleye, S.; Kazemirad, S.; Sassani, F.; Adamopoulos, S. Acoustic Emission Monitoring of Wood Materials and Timber Structures: A Critical Review. Constr. Build. Mater. 2022, 350, 128877. DOI: 10.1016/j.conbuildmat.2022.128877.
  • Guo, P.; Yang, C.; Yu, D.; Xu, Z. An Optimized UMR Sensor for Non-destructive Measurements of Moisture in Wood. Appl. Phys. A 2022, 128, 907. DOI: 10.1007/s00339-022-06016-8.
  • Hansson, L.; Cherepanova, E. Determination of Wood Moisture Properties Using a CT-Scanner in a Controlled High-Temperature Environment. J. Civ. Eng. Archit. 2012, 6, 372.
  • Boonstra, M. J.; Van Acker, J.; Tjeerdsma, B. F.; Kegel, E. V. Strength Properties of Thermally Modified Softwoods and Its Relation to Polymeric Structural Wood Constituents. Ann. For. Sci. 2007, 64, 679–690. DOI: 10.1051/forest:2007048.
  • Zhan, J.-F.; Avramidis, S. Impact of Conventional Drying and Thermal Post-Treatment on the Residual Stresses and Shape Deformations of Larch Lumber. Drying Technol. 2017, 35, 15–24. DOI: 10.1080/07373937.2016.1156123.
  • Bengtsson, C.; Kliger, R. Bending Creep of High-Temperature Dried Spruce Timber; Holzforschung: Germany, 2003.
  • Honfi, D.; Mårtensson, A.; Thelandersson, S.; Kliger, R. Modelling of Bending Creep of Low-and High-Temperature-Dried Spruce Timber. Wood Sci. Technol. 2014, 48, 23–36. DOI: 10.1007/s00226-013-0581-4.
  • Hanhijärvi, A. Deformation Properties of Finnish Spruce and Pine Wood in Tangential and Radial Directions in Association to High Temperature Drying Part IV. Modelling. Holz als Roh-und Werkstoff 2000, 58, 211–216.
  • Hanhijärvi, A. Deformation Properties of Finnish Spruce and Pine Wood in Tangential and Radial Directions in Association to High Temperature Drying Part II. Experimental Results under Constant Conditions (Viscoelastic Creep). Holz als Roh-und Werkstoff 1999, 57, 365–372.
  • Sehlstedt-Persson, M.; Wamming, T. Wood Drying Process: Impact on Scots Pine Lumber Durability. J. Wood Sci. 2010, 56, 25–32. DOI: 10.1007/s10086-009-1066-9.
  • Calonego, F. W.; Severo, E. T. D.; Furtado, E. L. Decay Resistance of Thermally-Modified Eucalyptus Grandis Wood at 140, 160, 180, 200 and 220 C. Bioresour. Technol. 2010, 101, 9391–9394. DOI: 10.1016/j.biortech.2010.06.119.
  • Vidholdová, Z.; Kačík, F.; Reinprecht, L.; Kučerová, V.; Luptáková, J. Changes in Chemical Structure of Thermally Modified Spruce Wood Due to Decaying Fungi. J. Fungi 2022, 8, 739. DOI: 10.3390/jof8070739.
  • Edvardsen, K.; Sandland, K. M. Increased Drying Temperature-Its Influence on the Dimensional Stability of Wood. Holz als Roh-und Werkstoff 1999, 57, 207–209.
  • Chang, C.; Keith, C. Properties of Heat-Darkened Wood. II Mechanical Properties and Gluability; Forest Products Laboratory: Canada, 1978.
  • Bao, Y.; Zhou, Y. Comparative Study of Moisture Absorption and Dimensional Stability of Chinese Cedar Wood with Conventional Drying and Superheated Steam Drying. Drying Technol. 2017, 35, 860–866. DOI: 10.1080/07373937.2016.1222417.
  • Bekhta, P.; Niemz, P. Effect of High Temperature on the Change in Color, Dimensional Stability and Mechanical Properties of Spruce Wood; Holzforschung: Germany, 2003.
  • Kininmonth, J. Effect of Timber Drying Temperature on Subsequent Moisture and Dimensional Changes. NZJ For. Sci. 1976, 6, 101–107.
  • Sik, H. S.; Choo, K. T.; Zakaria, S.; Ahmad, S.; How, S. S.; Chia, C. H.; Yusoff, M. Dimensional Stability of High Temperature-Dried Rubberwood Solid Lumber at Two Equilibrium Moisture Content Conditions. Drying Technol. 2010, 28, 1083–1090. DOI: 10.1080/07373937.2010.506162.
  • Frühwald, E. Effect of High-Temperature Drying and Restraint on Twist of Norway Spruce. Drying Technol. 2007, 25, 489–496. DOI: 10.1080/07373930601184056.
  • Espenas, L. D. Shrinkage of Douglas Fir, Western Hemlock, and Red Alder as Affected by Drying Conditions; Corvallis, Oregon State University School of Forestry, Forest Research Laboratory, 1971.
  • Herrera-Díaz, R.; Sepúlveda-Villarroel, V.; Pérez-Peña, N.; Salvo-Sepúlveda, L.; Salinas-Lira, C.; Llano-Ponte, R.; Ananías, R. A. Effect of Wood Drying and Heat Modification on Some Physical and Mechanical Properties of Radiata Pine. Drying Technol. 2018, 36, 537–544. DOI: 10.1080/07373937.2017.1342094.
  • Morén, T. The Basics of Wood Drying: Moisture Dynamics, Drying Methods, Wood Responses; Valutec AB: Sweden, 2016.
  • Langrish, T. A.; Nijdam, J. J.; Keey, R. B. The Optimisation of Drying Schedules for Pinus radiata Sapwood Boards. Dev. Chem. Eng. Mineral Process. 2004, 12, 237–248. DOI: 10.1002/apj.5500120402.
  • Vansteenkiste, D.; Stevens, M.; Van Acker, J. High Temperature Drying of Fresh Sawn Poplar Wood in an Experimental Convective Dryer. Eur. J. Wood Wood Prod. 1997, 55, 307–314.
  • Milić, G.; Kolin, B.; Lovrić, A.; Todorović, N.; Popadić, R. Drying of Beech (Fagus sylvatica L.) Timber in Oscillation Climates: Drying Time and Quality. Holzforschung 2013, 67, 805–813. DOI: 10.1515/hf-2012-0203.
  • De La Cruz-Lefevre, M.; Rémond, R.; Aléon, D.; Perré, P. Effect of Oscillating Drying Conditions on Variations in the Moisture Content Field inside Wood Boards. Wood Mater. Sci. Eng. 2010, 5, 84–90. DOI: 10.1080/17480272.2010.484103.
  • Pang, S.; Simpson, I.; Haslett, T. Cooling and Steam Conditioning after High-Temperature Drying of Pinus radiata Board: Experimental Investigation and Mathematical Modelling. Wood Sci. Technol. 2001, 35, 487–502. DOI: 10.1007/s00226-001-0124-2.
  • Lee, N.-H.; Li, C.; Zhao, X.-F.; Park, M.-J. Effect of Pretreatment with High Temperature and Low Humidity on Drying Time and Prevention of Checking during Radio-Frequency/Vacuum Drying of Japanese Cedar Pillar. J. Wood Sci. 2010, 56, 19–24. DOI: 10.1007/s10086-009-1050-4.
  • Rautkari, L.; Honkanen, J.; Hill, C. A.; Ridley-Ellis, D.; Hughes, M. Mechanical and Physical Properties of Thermally Modified Scots Pine Wood in High Pressure Reactor under Saturated Steam at 120, 150 and 180 C. Eur. J. Wood Prod. 2014, 72, 33–41. DOI: 10.1007/s00107-013-0749-5.
  • Rosenkilde, A.; Widell, K.-O.; Blomberg, J. Högtemperaturtorkning Samt Torkning Vid 90 C, Dess Effekter På Virke Och Kådlåpor; Trätek: Sweden, 2002.