147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thermal stabilization of biologics inside glass vials using light-assisted drying (LAD)

, , &
Received 12 Apr 2024, Accepted 06 Jun 2024, Published online: 24 Jun 2024

References

  • Pambudi, N. A.; Sarifudin, A.; Gandidi, I. M.; Romadhon, R. Vaccine Cold Chain Management and Cold Storage Technology to Address the Challenges of Vaccination Programs. Energy Rep. 2022, 8, 955–972. DOI: 10.1016/j.egyr.2021.12.039.
  • Rexroad, J.; Wiethoff, C. M.; Jones, L. S.; Middaugh, C. R. Lyophilization and the Thermostability of Vaccines. Cell Preservat. Technol. 2002, 1, 91–104. DOI: 10.1089/153834402320882593.
  • Kis, Z. Stability Modelling of mRNA Vaccine Quality Based on Temperature Monitoring throughout the Distribution Chain. Pharmaceut. 2022, 14, 430. DOI: 10.3390/pharmaceutics14020430.
  • Tang, X.; Pikal, M. J. Design of Freeze-Drying Processes for Pharmaceuticals: Practical Advice. Pharm. Res. 2004, 21, 191–200. DOI: 10.1023/b:Pham.0000016234.73023.75.
  • Liapis, A.; Bruttini, R. Exergy Analysis of Freeze Drying of Pharmaceuticals in Vials on Trays. Int. J. Heat Mass Transf. 2008, 51, 3854–3868. DOI: 10.1016/j.ijheatmasstransfer.2007.11.048.
  • Kawasaki, H.; Shimanouchi, T.; Kimura, Y. Recent Development of Optimization of Lyophilization Process. J. Chem. 2019, 2019, 1–14. DOI: 10.1155/2019/9502856.
  • Roughton, B. C.; Iyer, L. K.; Bertelsen, E.; Topp, E. M.; Camarda, K. V. Protein Aggregation and Lyophilization: Protein Structural Descriptors as Predictors of Aggregation Propensity. Comput. Chem. Eng. 2013, 58, 369–377. DOI: 10.1016/j.compchemeng.2013.07.008.
  • Wang, W. Lyophilization and Development of Solid Protein Pharmaceuticals. Int. J. Pharm. 2000, 203, 1–60. DOI: 10.1016/s0378-5173(00)00423-3.
  • Arakawa, T.; Prestrelski, S. J.; Kenney, W. C.; Carpenter, J. F. Factors Affecting Short-Term and Long-Term Stabilities of Proteins. Adv. Drug Delivery Rev. 2001, 46, 307–326. DOI: 10.1016/s0169-409x(00)00144-7.
  • Wang, Z.; Li, L.; Ren, G.; Duan, X.; Guo, J.; Liu, W.; Ang, Y.; Zhu, L.; Ren, X. A Comprehensive Review on Stability of Therapeutic Proteins Treated by Freeze-Drying: Induced Stresses and Stabilization Mechanisms Involved in Processing. Drying Technol. 2022, 40, 3373–3388. DOI: 10.1080/07373937.2022.2048847.
  • Zhang, Q.; Gong, L.; Zhang, Y.; Shen, Y.; Shen, L.; Cao, L.; Han, G.; Hu, F.; Zhao, F.; Chen, Z. Room-Temperature-Storable Chemiluminescence Freeze-Drying Mixes for Detection of SARS-CoV-2 Neutralizing Antibody. Drying Technol. 2022, 40, 3064–3071. DOI: 10.1080/07373937.2021.2015604.
  • Pardeshi, S.; More, M.; Patil, P.; Pardeshi, C.; Deshmukh, P.; Mujumdar, A.; Naik, J. A Meticulous Overview on Drying-Based (Spray-, Freeze-, and Spray-Freeze) Particle Engineering Approaches for Pharmaceutical Technologies. Drying Technol. 2021, 39, 1447–1491. DOI: 10.1080/07373937.2021.1893330.
  • Clausi, A. L.; Merkley, S. A.; Carpenter, J. F.; Randolph, T. W. Inhibition of Aggregation of Aluminum Hydroxide Adjuvant during Freezing and Drying. J. Pharm. Sci. 2008, 97, 2049–2061. DOI: 10.1002/jps.21143.
  • Alzhrani, R. F.; Xu, H.; Moon, C.; Suggs, L. J.; Williams, R. O.; Cui, Z. Thin-Film Freeze-Drying is a Viable Method to Convert Vaccines Containing Aluminum Salts from Liquid to Dry Powder. Vaccine Delivery Technol. 2021, 489–498.
  • Thorat, B. N.; Sett, A.; Mujumdar, A. Drying of Vaccines and Biomolecules. Drying Technol. 2022, 40, 461–483. DOI: 10.1080/07373937.2020.1825293.
  • Carpenter, J. F.; Chang, B. S. Lyophilization of Protein Pharmaceuticals. In Biotechnology and Biopharmaceutical Manufacturing, Processing, and Preservation; CRC Press, 2020; pp 199–264.
  • Cicerone, M. T.; Pikal, M. J.; Qian, K. K. Stabilization of Proteins in Solid Form. Adv Drug Deliv Rev 2015, 93, 14–24. https://www.ncbi.nlm.nih.gov/pubmed/25982818. DOI: 10.1016/j.addr.2015.05.006.
  • Kumru, O. S.; Joshi, S. B.; Smith, D. E.; Middaugh, C. R.; Prusik, T.; Volkin, D. B. Vaccine Instability in the Cold Chain: Mechanisms, Analysis and Formulation Strategies. Biologicals 2014, 42, 237–259. DOI: 10.1016/j.biologicals.2014.05.007.
  • Pinto, J. T.; Faulhammer, E.; Dieplinger, J.; Dekner, M.; Makert, C.; Nieder, M.; Paudel, A. Progress in Spray-Drying of Protein Pharmaceuticals: Literature Analysis of Trends in Formulation and Process Attributes. Drying Technol. 2021, 39, 1415–1446. DOI: 10.1080/07373937.2021.1903032.
  • McAdams, D.; Chen, D.; Kristensen, D. Spray Drying and Vaccine Stabilization. Expert Review of Vaccines 2012, 11, 1211–1219. DOI: 10.1586/erv.12.101.
  • Crowe, J. H.; Crowe, L. M. Preservation of Mammalian Cells – Learning Nature’s Tricks. Nat. Biotechnol. 2000, 18, 145–146. DOI: 10.1038/72580.
  • Wolkers, W. F.; Tablin, F.; Crowe, J. H. From Anhydrobiosis to Freeze-Drying of Eukaryotic Cells. Comparat. Biochem. Physiol. 2002, 131, 535–543. DOI: 10.1016/s1095-6433(01)00505-0.
  • Caliskan, G.; Mechtani, D.; Roh, J.; Kisliuk, A.; Sokolov, A.; Azzam, S.; Cicerone, M. T.; Lin-Gibson, S.; Peral, I. Protein and Solvent Dynamics: How Strongly Are They Coupled? J. Chem. Phys. 2004, 121, 1978–1983. DOI: 10.1063/1.1764491.
  • Olsson, C.; Jansson, H.; Swenson, J. The Role of Trehalose for the Stabilization of Proteins. J. Phys. Chem. B. 2016, 120, 4723–4731. DOI: 10.1021/acs.jpcb.6b02517.
  • Magazu, S.; Romeo, G.; Telling, M. Temperature Dependence of Protein Dynamics as Affected by Sugars: A Neutron Scattering Study. Eur. Biophys. J. 2007, 36, 685–691. DOI: 10.1007/s00249-007-0190-y.
  • Patist, A.; Zoerb, H. Preservation Mechanisms of Trehalose in Food and Biosystems. Colloids Surf, B. 2005, 40, 107–113. DOI: 10.1016/j.colsurfb.2004.05.003.
  • Frigon, R. P.; Lee, J. C. The Stabilization of Calf-Brain Microtubule Protein by Sucrose. Arch. Biochem. Biophys. 1972, 153, 587–589. DOI: 10.1016/0003-9861(72)90376-1.
  • Young, M. A.; Antczak, A. T.; Wawak, A.; Elliott, G. D.; Trammell, S. R. Light-Assisted Drying for Protein Stabilization. J. Biomed. Opt. 2018, 23, 5007. DOI: 10.1117/1.JBO.23.7.075007.
  • Young, M. A.; Furr, D. P.; McKeough, R. Q.; Elliott, G. D.; Trammell, S. R. Light-Assisted Drying for Anhydrous Preservation of Biological Samples: Optical Characterization of the Trehalose Preservation Matrix. Biomed. Opt. Express. 2020, 11, 801–816. DOI: 10.1364/BOE.376630.
  • Anh Lam, P.; Furr, D. P.; Tran, A.; McKeough, R. Q.; Beasock, D.; Chandler, M.; Afonin, K. A.; Trammell, S. R. The Application of Light-Assisted Drying to the Thermal Stabilization of Nucleic Acid Nanoparticles. Biopreserv. Biobanking. 2022, 20, 451–460. DOI: 10.1089/bio.2022.0035.
  • Tran, A. N.; Chandler, M.; Halman, J.; Beasock, D.; Fessler, A.; McKeough, R. Q.; Lam, P. A.; Furr, D. P.; Wang, J.; Cedrone, E.; et al. Anhydrous Nucleic Acid Nanoparticles for Storage and Handling at Broad Range of Temperatures. Small. 2022, 18, 2104814. DOI: 10.1002/smll.202104814.
  • Furr, D.; Tsegaye, A.; Kern, M.; Olson, G.; Trammell, S. 2022 Light-Assisted Drying (LAD) for Anhydrous Preservation of Biologics: Processing Sample Volumes Comparable to a Therapeutic Dose. In Optics and Biophotonics in Low-Resource Settings VIII, SPIE, Vol. 11950, pp. 27–34. DOI: 10.1117/12.2609907.
  • Deegan, R. D.; Bakajin, O.; Dupont, T. F.; Huber, G.; Nagel, S. R.; Witten, T. A. Contact Line Deposits in an Evaporating Drop. Phys. Rev. E. 2000, 62, 756–765. https://link.aps.org/doi/10.1103/PhysRevE.62.756. DOI: 10.1103/physreve.62.756.
  • Erbil, H. Y. Evaporation of Pure Liquid Sessile and Spherical Suspended Drops: A Review. Adv. Colloid Interface Sci. 2012, 170, 67–86. DOI: 10.1016/j.cis.2011.12.006.
  • Vlasov, V. On a Theory of Mass Transfer during the Evaporation of a Spherical Droplet. Int. J. Heat Mass Transf. 2021, 178, 121597. DOI: 10.1016/j.ijheatmasstransfer.2021.121597.
  • Gordon, M.; Taylor, J. S. Ideal Copolymers and the Second-Order Transitions of Synthetic Rubbers. I. Non-Crystalline Copolymers. J. Appl. Chem. 1952, 2, 493–500. DOI: 10.1002/jctb.5010020901.