Publication Cover
Drying Technology
An International Journal
Volume 42, 2024 - Issue 10
40
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Tunnel-type continuous multi-physical field drying equipment: Design, numerical simulation and application

, , , , , , & show all
Pages 1606-1622 | Received 14 Mar 2024, Accepted 21 Jun 2024, Published online: 10 Jul 2024

References

  • Jin, Y.; Qi, Y.; Fan, M.; Zhang, J.; Kong, B.; Shao, B. Biotransformation of Carbendazim in Cowpea Pickling Process. Food Chem. 2023, 415, 135766. DOI: 10.1016/j.foodchem.2023.135766.
  • Huang, S.; Liu, H.; Yan, S.; Chen, D.; Mei, X. Changes in Phenolic Composition and Bioactivity of Raw and Pickled Cowpea (Vigna unguiculata L. Walp.) Green Pod after in Vitro Simulated Gastrointestinal Digestion. FSTR 2021, 27, 769–778. DOI: 10.3136/fstr.27.769.
  • Zielinska, M.; Ropelewska, E.; Xiao, H. W.; Mujumdar, A. S.; Law, C. L. Review of Recent Applications and Research Progress in Hybrid and Combined Microwave-Assisted Drying of Food Products: Quality Properties. Crit. Rev. Food Sci. Nutr. 2020, 60, 2212–2264. DOI: 10.1080/10408398.2019.1632788.
  • Wang, Q.; Li, S.; Han, X.; Ni, Y.; Zhao, D.; Hao, J. Quality Evaluation and Drying Kinetics of Shitake Mushrooms Dried by Hot Air, Infrared and Intermittent Microwave–Assisted Drying Methods. LWT Food Sci. Technol. 2019, 107, 236–242. DOI: 10.1016/j.lwt.2019.03.020.
  • Peng, J.; Yin, X.; Jiao, S.; Wei, K.; Tu, K.; Pan, L. Air Jet Impingement and Hot Air-Assisted Radio Frequency Hybrid Drying of Apple Slices. LWT Food Sci. Technol. 2019, 116, 108517. DOI: 10.1016/j.lwt.2019.108517.
  • Kumar, C.; Karim, M. A. Microwave-Convective Drying of Food Materials: A Critical Review. Crit. Rev. Food Sci. Nutr. 2019, 59, 379–394. DOI: 10.1080/10408398.2017.1373269.
  • Mousakhani-Ganjeh, A.; Amiri, A.; Nasrollahzadeh, F.; Wiktor, A.; Nilghaz, A.; Pratap-Singh, A.; Mousavi Khaneghah, A. Electro-Based Technologies in Food drying – A Comprehensive Review. LWT Food Sci. Technol. 2021, 145, 111315. DOI: 10.1016/j.lwt.2021.111315.
  • Lv, W.; Li, D.; Lv, H.; Jin, X.; Han, Q.; Su, D.; Wang, Y. Recent Development of Microwave Fluidization Technology for Drying of Fresh Fruits and Vegetables. Trends Food Sci. Technol. 2019, 86, 59–67. DOI: 10.1016/j.tifs.2019.02.047.
  • Atuonwu, J. C.; Tassou, S. A. Quality Assurance in Microwave Food Processing and the Enabling Potentials of Solid-State Power Generators: A Review. J. Food Eng. 2018, 234, 1–15. DOI: 10.1016/j.jfoodeng.2018.04.009.
  • Yang, H.; Yan, B.; Chen, W.; Fan, D. Prediction and Innovation of Sustainable Continuous Flow Microwave Processing Based on Numerical Simulations: A Systematic Review. Renew. Sustain. Energy Rev. 2023, 175, 113183. DOI: 10.1016/j.rser.2023.113183.
  • Li, M.; Wang, B.; Lv, W.; Lin, R.; Zhao, D. Characterization of Pre-Gelatinized Kidney Bean (Phaseolus vulgaris L.) Produced Using Microwave Hot-Air Flow Rolling Drying Technique. LWT – Food Sci. Technol. 2022, 154, 112673. DOI: 10.1016/j.lwt.2021.112673.
  • Su, D.; Lv, W.; Wang, Y.; Li, D.; Wang, L. Drying Characteristics and Water Dynamics during Microwave Hot-Air Flow Rolling Drying of Pleurotus eryngii. Drying Technol. 2019, 38, 1493–1504. DOI: 10.1080/07373937.2019.1648291.
  • Lv, H.; Lv, H.; Lv, W.; Su, D.; Zhao, D. Moisture Flow Characteristics and Variation Patterns of Dielectric Constants in Bitter Gourd Slices during Microwave Hot-Airflow Vibrating Drying. Drying Technol. 2019, 38, 1433–1445. DOI: 10.1080/07373937.2019.1645162.
  • Kantrong, H.; Tansakul, A.; Mittal, G. Drying Characteristics and Quality of Shiitake Mushroom Undergoing Microwave-Vacuum Drying and Microwave-Vacuum Combined with Infrared Drying. J. Food Sci. Technol. 2014, 51, 3594–3608. DOI: 10.1007/s13197-012-0888-4.
  • Tireki, S.; Şumnu, G.; Esin, A. Production of Bread Crumbs by Infrared-Assisted Microwave Drying. Eur. Food Res. Technol. 2005, 222, 8–14. DOI: 10.1007/s00217-005-0109-8.
  • Zhang, Y.; Zhao, Z.; Li, H.; Li, X.; Gao, X. Numerical Modeling and Optimal Design of Microwave-Heating Falling Film Evaporation. Chem. Eng. Sci. 2021, 240, 116681. DOI: 10.1016/j.ces.2021.116681.
  • Heshmati, M. K.; Khiavi, H. D.; Dehghannya, J.; Baghban, H. 3D Simulation of Momentum, Heat and Mass Transfer in Potato Cubes during Intermittent Microwave-Convective Hot Air Drying. Heat Mass Transfer 2022, 59, 239–254. DOI: 10.1007/s00231-022-03256-5.
  • Xu, C.-Y.; Wu, L.-L.; Chen, T. Air Velocity Distribution of the Circumferentially Arranged Nozzle Group. Therm. Sci. 2018, 22, 1589–1593. DOI: 10.2298/TSCI1804589X.
  • Menter, F. R. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA J. 1994, 32, 1598–1605. DOI: 10.2514/3.12149.
  • Wu, B.; Guo, X.; Guo, Y.; Ma, H.; Zhou, C. Enhancing Jackfruit Infrared Drying by Combining Ultrasound Treatments: Effect on Drying Characteristics, Quality Properties and Microstructure. Food Chem. 2021, 358, 129845. DOI: 10.1016/j.foodchem.2021.129845.
  • Liu, Y-y.; Sun, W-h.; Li, B-z.; Wang, Y.; Lv, W-q.; Shang, N.; Li, D.; Wang, L-j Dehydration Characteristics and Evolution of Physicochemical Properties of Platycodon grandiflorum (Jacq. A.DC.) Roots (PGR) during Pulse-Spouted Microwave Vacuum Drying (PSMVD). Ind. Crops Prod. 2022, 177, 114449. DOI: 10.1016/j.indcrop.2021.114449.
  • Cherbański, R. Numerical Simulations of Heat Transfer in a Packed Column: Comparison of Microwave and Convective Heating. Heat Mass Transfer 2014, 51, 723–733. DOI: 10.1007/s00231-014-1447-5.
  • Shen, L.; Zhu, Y.; Liu, C.; Wang, L.; Liu, H.; Kamruzzaman, M.; Liu, C.; Zhang, Y.; Zheng, X. Modelling of Moving Drying Process and Analysis of Drying Characteristics for Germinated Brown Rice under Continuous Microwave Drying. Biosyst. Eng. 2020, 195, 64–88. DOI: 10.1016/j.biosystemseng.2020.05.002.
  • Venkatesh, M. S.; Raghavan, G. S. V. An Overview of Microwave Processing and Dielectric Properties of Agri-Food Materials. Biosyst. Eng. 2004, 88, 1–18. DOI: 10.1016/j.biosystemseng.2004.01.007.
  • Shen, L.; Wang, L.; Zheng, C.; Liu, C.; Zhu, Y.; Liu, H.; Liu, C.; Shi, Y.; Zheng, X.; Xu, H.; et al. Continuous Microwave Drying of Germinated Brown Rice: Effects of Drying Conditions on Fissure and Color, and Modeling of Moisture Content and Stress inside Kernel. Drying Technol. 2020, 39, 669–697. DOI: 10.1080/07373937.2019.1705331.
  • Teleken, J. T.; Dutra, A. C.; Laurindo, J. B.; Carciofi, B. A. M. Numerical Modeling of Heating Tomato Pulp in Continuous Flow Microwave‐Assisted Thermal Processing: Estimation of Quality Parameters. J. Food Process Eng. 2022, 46, 1–15. DOI: 10.1111/jfpe.14216.
  • Gulati, T.; Zhu, H.; Datta, A. K.; Huang, K. Microwave Drying of Spheres: Coupled Electromagnetics-Multiphase Transport Modeling with Experimentation. Part II: Model Validation and Simulation Results. Food Bioprod. Process. 2015, 96, 326–337. DOI: 10.1016/j.fbp.2015.08.001.
  • Guan, C.; Zhan, L.; Yao, S. Finite Element Simulation and Experimental Research on Uniformity Regulation of Microwave Heating of Composite Materials. Polymers (Basel) 2022, 14, 3484. DOI: 10.3390/polym14173484.
  • Jiang, Q.; Zhang, Y.; Yan, S.; Xu, L. Optimal Design of an Angular Box for a Mixed Flow Grain Dryer. Appl. Eng. Agric. 2021, 37, 555–562. DOI: 10.13031/aea.14643.
  • Geng, Z.; Li, M.; Zhu, L.; Zhang, X.; Zhu, H.; Yang, X.; Yu, X.; Zhang, Q.; Hu, B. Design and Experiment of Combined Infrared and Hot-Air Dryer Based on Temperature and Humidity Control with Sea Buckthorn (Hippophae rhamnoides L.). Foods 2023, 12, 2299. DOI: 10.3390/foods12122299.
  • Youcef-Ali, S.; Moummi, N.; Desmons, J. Y.; Abene, A.; Messaoudi, H.; Le Ray, M. Numerical and Experimental Study of Dryer in Forced Convection. Int. J. Energy Res. 2001, 25, 537–553. DOI: 10.1002/er.707.
  • Nomura, K.; Terwilliger, P. Self-Dual Leonard Pairs. Special Matrices 2019, 7, 1–19. DOI: 10.1515/spma-2019-0001.
  • Su, D.; Lv, W.; Wang, Y.; Wang, L.; Li, D. Influence of Microwave Hot-Air Flow Rolling Dry-Blanching on Microstructure, Water Migration and Quality of Pleurotus eryngii during Hot-Air Drying. Food Control 2020, 114, 107228. DOI: 10.1016/j.foodcont.2020.107228.
  • Yao, L.; Fan, L.; Duan, Z. Effect of Different Pretreatments Followed by Hot-Air and Far-Infrared Drying on the Bioactive Compounds, Physicochemical Property and Microstructure of Mango Slices. Food Chem. 2020, 305, 125477. DOI: 10.1016/j.foodchem.2019.125477.
  • Xiao, H.-W.; Bai, J.-W.; Sun, D.-W.; Gao, Z.-J. The Application of Superheated Steam Impingement Blanching (SSIB) in Agricultural Products Processing – A Review. J. Food Eng. 2014, 132, 39–47. DOI: 10.1016/j.jfoodeng.2014.01.032.
  • Tao, Y.; Han, M.; Gao, X.; Han, Y.; Show, P.-L.; Liu, C.; Ye, X.; Xie, G. Applications of Water Blanching, Surface Contacting Ultrasound-Assisted Air Drying, and Their Combination for Dehydration of White Cabbage: Drying Mechanism, Bioactive Profile, Color and Rehydration Property. Ultrason. Sonochem. 2019, 53, 192–201. DOI: 10.1016/j.ultsonch.2019.01.003.
  • Li, L.; Zhang, M.; Yang, P. Suitability of LF-NMR to Analysis Water State and Predict Dielectric Properties of Chinese Yam during Microwave Vacuum Drying. LWT – Food Sci. Technol. 2019, 105, 257–264. DOI: 10.1016/j.lwt.2019.02.017.
  • Sun, Q.; Zhang, M.; Mujumdar, A. S.; Yu, D. Research on the Vegetable Shrinkage During Drying and Characterization and Control Based on LF-NMR. Food Bioprocess Technol. 2022, 15, 2776–2788. DOI: 10.1007/s11947-022-02917-x.
  • Sun, Y.; Zhang, M.; Mujumdar, A. S.; Yu, D. Pulse-Spouted Microwave Freeze Drying of Raspberry: Control of Moisture Using ANN Model Aided by LF-NMR. J. Food Eng. 2021, 292, 110354. DOI: 10.1016/j.jfoodeng.2020.110354.
  • Xu, C.; Li, Y.; Yu, H. Effect of Far-Infrared Drying on the Water State and Glass Transition Temperature in Carrots. J. Food Eng. 2014, 136, 42–47. DOI: 10.1016/j.jfoodeng.2014.03.022.
  • Deng, L.-Z.; Pan, Z.; Mujumdar, A. S.; Zhao, J.-H.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. High-Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Quality of Apricots by Inactivating the Enzymes, Reducing Drying Time and Altering Cellular Structure. Food Control 2019, 96, 104–111. DOI: 10.1016/j.foodcont.2018.09.008.
  • Feng, Y.; Ping Tan, C.; Zhou, C.; Yagoub, A. E. A.; Xu, B.; Sun, Y.; Ma, H.; Xu, X.; Yu, X. Effect of Freeze-Thaw Cycles Pretreatment on the Vacuum Freeze-Drying Process and Physicochemical Properties of the Dried Garlic Slices. Food Chem. 2020, 324, 126883. DOI: 10.1016/j.foodchem.2020.126883.
  • Li, M.; Chen, Y.; Geng, Y.; Liu, F.; Guo, L.; Wang, X. Convenient Use of Low Field Nuclear Magnetic Resonance to Determine the Drying Kinetics and Predict the Quality Properties of Mulberries Dried in Hot-Blast Air. LWT – Food Sci. Technol. 2021, 137, 110402. DOI: 10.1016/j.lwt.2020.110402.
  • Ren, Z.; Yu, X.; Yagoub, A. E. A.; Fakayode, O. A.; Ma, H.; Sun, Y.; Zhou, C. Combinative Effect of Cutting Orientation and Drying Techniques (Hot Air, Vacuum, Freeze and Catalytic Infrared Drying) on the Physicochemical Properties of Ginger (Zingiber officinale Roscoe). LWT – Food Sci. Technol. 2021, 144, 111238. DOI: 10.1016/j.lwt.2021.111238.
  • Zeng, S.; Du, Z.; Lv, W.; Li, D.; Su, D.; Lv, H. Experimental Study on the Hygrothermal Dynamics of Peanut (Arachis hypogaea Linn.) in the Process of Superposition and Variable Temperature Drying. Drying Technol. 2021, 40, 1463–1477. DOI: 10.1080/07373937.2021.1873359.
  • Xu, X.; Zhang, L.; Feng, Y.; ElGasim A Yagoub, A.; Sun, Y.; Ma, H.; Zhou, C. Vacuum Pulsation Drying of Okra (Abelmoschus esculentus L. Moench): Better Retention of the Quality Characteristics by Flat Sweep Frequency and Pulsed Ultrasound Pretreatment. Food Chem. 2020, 326, 127026. DOI: 10.1016/j.foodchem.2020.127026.
  • Kumar, Y.; Singh, L.; Sharanagat, V. S.; Mani, S.; Kumar, S.; Kumar, A. Quality Attributes of Convective Hot Air Dried Spine Gourd (Momordica dioica Roxb. Ex Willd) Slices. Food Chem. 2021, 347, 129041. DOI: 10.1016/j.foodchem.2021.129041.
  • Yu, K.; Zhou, H.-M.; Zhu, K.-X.; Guo, X.-N.; Peng, W. Physicochemical Changes in the Discoloration of Dried Green Tea Noodles Caused by Polyphenol Oxidase from Wheat Flour. LWT - Food Sci. Technol. 2020, 130, 109614. DOI: 10.1016/j.lwt.2020.109614.
  • Feng, Y.; Xu, B.; ElGasim A Yagoub, A.; Ma, H.; Sun, Y.; Xu, X.; Yu, X.; Zhou, C. Role of Drying Techniques on Physical, Rehydration, Flavor, Bioactive Compounds and Antioxidant Characteristics of Garlic. Food Chem. 2021, 343, 128404. DOI: 10.1016/j.foodchem.2020.128404.
  • Deng, L.-Z.; Mujumdar, A. S.; Yang, X.-H.; Wang, J.; Zhang, Q.; Zheng, Z.-A.; Gao, Z.-J.; Xiao, H.-W. High Humidity Hot Air Impingement Blanching (HHAIB) Enhances Drying Rate and Softens Texture of Apricot via Cell Wall Pectin Polysaccharides Degradation and Ultrastructure Modification. Food Chem. 2018, 261, 292–300. DOI: 10.1016/j.foodchem.2018.04.062.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.