0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Energy and exergy analysis for a laboratory-scale closed-loop spray drying system: Experiments and simulations

&
Received 11 Feb 2024, Accepted 30 Jul 2024, Published online: 08 Aug 2024

References

  • Aghbashlo, M.; Mobli, H.; Rafiee, S.; Madadlou, A. Energy and Exergy Analyses of the Spray Drying Process of Fish Oil Microencapsulation. Biosyst. Eng. 2012, 111, 229–241. DOI: 10.1016/j.biosystemseng.2011.12.001.
  • Johnson, P. W.; Langrish, T. A. G. Exergy Analysis of a Spray Dryer: Methods and Interpretations. Drying Technol. 2018, 36, 578–596. DOI: 10.1080/07373937.2017.1349790.
  • Johnson, P. W. Energy and Exergy Analysis in Spray Drying Systems. 2019. https://hdl.handle.net/2123/22124 (accessed Mar 23, 2024).
  • Guo, S.; Xiao, Y.; Tian, W.; Zhang, Z. Energy and Exergy Analysis of a Novel Efficient Combined Process by Hydrothermal Degradation and Superheated Steam Drying of Degradable Organic Wastes. J. Therm. Sci. 2006, 15, 274–280. DOI: 10.1007/s11630-006-0274-5.
  • Hoffmann. Energy Transition Barometer. https://scholar.google.com/scholar_lookup?title=Energy%20transition%20barometer%3A%202018&publication_year=2018&author=C.%20Hoffmann (accessed Apr 30, 2024).
  • Yi, J.; Li, X.; He, J.; Duan, X. D. Drying Efficiency and Product Quality of Biomass Drying: A Review. Drying Technol. 2020, 38, 2039–2054. DOI: 10.1080/07373937.2019.1628772.
  • Dincer, I.; Rosen, M. A. Exergy as a Driver for Achieving Sustainability. J. Green Energy 2004, 1, 1–19. DOI: 10.1081/GE-120027881.
  • Amjad, W.; Hensel, O.; Munir, A.; Esper, A.; Sturm, B. Thermodynamic Analysis of Drying Process in a Diagonal-Batch Dryer Developed for Batch Uniformity Using Potato Slices. J. Food Eng. 2016, 169, 238–249. DOI: 10.1016/j.jfoodeng.2015.09.004.
  • Hammond, G. P.; Stapleton, A. J. Exergy Analysis of the United Kingdom Energy System. Proc. Inst. Mech. Eng. Part A J. Power Energy 2001, 215, 141–162. DOI: 10.1243/0957650011538424.
  • Van Gool, W. Energy Policy: Fairy Tales and Factualities. Innovation and Technology—Strategies and Policies. Springer: Dordrecht, Netherlands; 1997, 93–105. DOI: 10.1007/978-0-585-29606-7_6.
  • Chowdhury, T.; Chowdhury, H.; Chowdhury, P.; Sait, S. M.; Paul, A.; Uddin Ahamed, J.; Saidur, R. A Case Study to Application of Exergy-Based Indicators to Address the Sustainability of Bangladesh Residential Sector. Sustain. Energy Technol. Assess. 2020, 37, 100615. DOI: 10.1016/j.seta.2019.100615.
  • Erbay, Z.; Hepbasli, A. Application of Conventional and Advanced Exergy Analyses to Evaluate the Performance of a Ground-Source Heat Pump (GSHP) Dryer Used in Food Drying. Energy Convers. Manage. 2014, 78, 499–507. DOI: 10.1016/j.enconman.2013.11.009.
  • Sarker, M. S. H.; Ibrahim, M. N.; Abdul Aziz, N.; Punan, M. S. Energy and Exergy Analysis of Industrial Fluidized Bed Drying of Paddy. Energy 2015, 84, 131–138. DOI: 10.1016/j.energy.2015.02.064.
  • Surendhar, A.; Sivasubramanian, V.; Vidhyeswari, D.; Deepanraj, B. Energy and Exergy Analysis, Drying Kinetics, Modeling and Quality Parameters of Microwave-Dried Turmeric Slices. J. Therm. Anal. Calorim. 2019, 136, 185–197. DOI: 10.1007/S10973-018-7791-9/METRICS.
  • Aziz, M.; Oda, T.; Kashiwagi, T. Energy-Efficient Low Rank Coal Drying Based on Enhanced Vapor Recompression Technology. Drying Technol. 2014, 32, 1621–1631. DOI: 10.1080/07373937.2014.915219.
  • Zohrabi, S.; Aghbashlo, M.; Seiiedlou, S. S.; Scaar, H.; Mellmann, J. Energy Saving in a Convective Dryer by Using Novel Real-Time Exergy-Based Control Schemes Adjusting Exhaust Air Recirculation. J. Clean. Prod. 2020, 257, 120394. DOI: 10.1016/j.jclepro.2020.120394.
  • Sheikhshoaei, H.; Dowlati, M.; Aghbashlo, M.; Rosen, M. A. Exergy Analysis of a Pistachio Roasting System. Drying Technol. 2020, 38, 1565–1583. DOI: 10.1080/07373937.2019.1649276.
  • Erbay, Z.; Hepbasli, A. Assessment of Cost Sources and Improvement Potentials of a Ground-Source Heat Pump Food Drying System through Advanced Exergoeconomic Analysis Method. Energy 2017, 127, 502–515. DOI: 10.1016/j.energy.2017.03.148.
  • Fyhr, C.; Rasmuson, A. Some Aspects of the Modelling of Wood Chips Drying in Superheated Steam. Int. J. Heat Mass Transf. 1997, 40, 2825–2842. DOI: 10.1016/S0017-9310(96)00340-7.
  • Pang, S.; Pearson, H. Experimental Investigation and Practical Application of Superheated Steam Drying Technology of Softwood Timber. Drying Technol. 2004, 22, 2079–2094. DOI: 10.1081/DRT-200034252.
  • Hosseinabadi, H. Z.; Layeghi, M.; Berthold, D.; Doosthosseini, K.; Shahhosseini, S. Mathematical Modeling the Drying of Poplar Wood Particles in a Closed-Loop Triple Pass Rotary Dryer. Drying Technol. 2014, 32, 55–67. DOI: 10.1080/07373937.2013.811250.
  • Vázquez-León, L. A.; Olguín-Rojas, J. A.; Páramo-Calderón, D. E.; Barbero, G. F.; Salgado-Cervantes, M. A.; Palma, M.; García-Alvarado, M. A.; Rodríguez-Jimenes, G. C. Closed-Loop Spray Drying with N2 of Moringa Oleifera Leaf Ethanolic Extracts: Effects on Bioactive Compounds and Antiradical Activity. Drying Technol. 2021, 39, 2092–2104. DOI: 10.1080/07373937.2020.1753764.
  • Moejes, S.; Visser, Q.; Bitter, J. H.; Van Boxtel, A. J. B. Closed-Loop Spray Drying Solutions for Energy Efficient Powder Production. Innov. Food Sci. Emerg. Technol. 2018, 47, 24–37. DOI: 10.1016/j.ifset.2018.01.005.
  • Poozesh, S.; Cousin, C. A. Integrating a Dynamic Multiscale Drying Model into a Closed Loop Control Strategy for Laboratory Spray Dryer. Drying Technol. 2022, 40, 2308–2320. DOI: 10.1080/07373937.2021.1934692.
  • Poozesh, S.; Karam, M.; Akafuah, N.; Wang, Y. Integrating a Model Predictive Control into a Spray Dryer Simulator for a Closed-Loop Control Strategy. Int. J. Heat Mass Transf. 2021, 170, 121010. DOI: 10.1016/j.ijheatmasstransfer.2021.121010.
  • Woo, M. W.; Daud, W. R. W.; Tasirin, S. M.; Talib, M. Z. M. Effect of Wall Surface Properties at Different Drying Kinetics on the Deposition Problem in Spray Drying. Drying Technol. 2008, 26, 15–26. DOI: 10.1080/07373930701781033.
  • Arnoux, L.; Orange, P.; Scott, K.; Langrish, T.; Keey, R. Multiple-Effect Superheated-Steam Drying of Woody Biomass Fuels for Pulverised-Fuel Combustion. Presented at the Proceedings of the 9th International Drying Symposium, Gold Coast, Australia, 1–4 August 1994, A, 157–164. https://www.cabidigitallibrary.org/doi/full/10.5555/19942402071.
  • Razaghiyan, M.; Rahimi, M. R.; Karimi, H. Energy and Exergy Analysis of Oil-Field Produced Water Treatment Process by Using a Closed-Loop Spray Dryer. Desalination Water Treat. 2020, 195, 96–107. DOI: 10.5004/dwt.2020.25708.
  • Coskun, C.; Bayraktar, M.; Oktay, Z.; Dincer, I. Energy and Exergy Analyses of an Industrial Wood Chips Drying Process. Int. J. Low-Carbon Technol. 2009, 4, 224–229. DOI: 10.1093/ijlct/ctp024.
  • Ghasemkhani, H.; Keyhani, A.; Aghbashlo, M.; Rafiee, S.; Mujumdar, A. S. Improving Exergetic Performance Parameters of a Rotating-Tray Air Dryer via a Simple Heat Exchanger. Appl. Therm. Eng. 2016, 94, 13–23. DOI: 10.1016/j.applthermaleng.2015.10.114.
  • Yoru, Y.; Karakoc, T. H.; Hepbasli, A. Dynamic Energy and Exergy Analyses of an Industrial Cogeneration System. Int. J. Energy Res. 2010, 34, 345–356. DOI: 10.1002/er.1561.
  • Erbay, Z.; Hepbasli, A. Advanced Exergy Analysis of a Heat Pump Drying System Used in Food Drying. Drying Technol. 2013, 31, 802–810. DOI: 10.1080/07373937.2012.763044.
  • Hewitt, G. F.; Shires, G. L.; Bott, T. R. Process Heat Transfer. Begell House (US), 1994. DOI: 10.1615/978-1-56700-149-5.0.
  • Wang, S.; Langrish, T. A. G. A Distributed Parameter Model for Particles in the Spray Drying Process. Adv. Powder Technol. 2009, 20, 220–226. DOI: 10.1016/j.apt.2009.03.004.
  • Manjhi, S. K.; Kumar, R. Comparative Performance of K, E, and J-Type Fast Response Coaxial Probes for Short-Period Transient Measurements. J. Therm. Sci. Eng. Appl. 2021, 13, 031029. DOI: 10.1115/1.4048664.
  • Thermocouple Accuracy and Adherence to Critical Standards. | 2021-08-18 | Industrial Heating. https://www.industrialheating.com/articles/96536-thermocouple-accuracy-and-adherence-to-critical-standards (accessed Sept 10, 2023).
  • Whalley, P. B. B. Condensation, and Gas-Liquid Flow; Oxford University Press: Oxford, England, 1987.