0
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rice protein hydrolysates as natural emulsifiers for an effective microencapsulation of orange essential oil by spray drying

&
Received 23 Apr 2024, Accepted 01 Aug 2024, Published online: 10 Aug 2024

References

  • Drusch, S.; Klost, M.; Kieserling, H. Current Knowledge on the Interfacial Behaviour Limits Our Understanding of Plant Protein Functionality in Emulsions. Curr. Opin. Colloid Interface Sci. 2021, 56, 101503. DOI: 10.1016/j.cocis.2021.101503.
  • Gomes, M. H. G.; Kurozawa, L. E. Influence of Rice Protein Hydrolysate on Lipid Oxidation Stability and Physico-Chemical Properties of Linseed Oil Microparticles Obtained through Spray-Drying. LWT 2021, 139, 110510. DOI: 10.1016/j.lwt.2020.110510.
  • Gomes, M. H. G.; Kurozawa, L. E. Improvement of the Functional and Antioxidant Properties of Rice Protein by Enzymatic Hydrolysis for the Microencapsulation of Linseed Oil. J. Food Eng. 2020, 267, 109761. DOI: 10.1016/j.jfoodeng.2019.109761.
  • Tamm, F.; Herbst, S.; Brodkorb, A.; Drusch, S. Functional Properties of Pea Protein Hydrolysates in Emulsions and Spray-Dried Microcapsules. Food Hydrocoll. 2016, 58, 204–214. DOI: 10.1016/j.foodhyd.2016.02.032.
  • Han, S. W.; Chee, K. M.; Cho, S. J. Nutritional Quality of Rice Bran Protein in Comparison to Animal and Vegetable Protein. Food Chem. 2014, 172, 766–769. DOI: 10.1016/j.foodchem.2014.09.127.
  • Amagliani, L.; O'Regan, J.; Kelly, A. L.; O'Mahony, J. A. The Composition, Extraction, Functionality and Applications of Rice Proteins: A Review. Trends Food Sci. Technol. 2017, 64, 1–12. DOI: 10.1016/j.tifs.2017.01.008.
  • Gomes, M. H. G.; Kurozawa, L. E. Performance of Rice Protein Hydrolysates as a Stabilizing Agent on Oil-in-Water Emulsions. Food Res. Int. 2023, 172, 113099. DOI: 10.1016/j.foodres.2023.113099.
  • Eckert, E.; Han, J.; Swallow, K.; Tian, Z.; Jarpa-Parra, M.; Chen, L. Effects of Enzymatic Hydrolysis and Ultrafiltration on Physicochemical and Functional Properties of Faba Bean Protein. Cereal Chem. 2019, 96, 725–741. DOI: 10.1002/cche.10169.
  • Ho, T. M.; Ton, T. T.; Gaiani, C.; Bhandari, B. R.; Bansal, N. Changes in Surface Chemical Composition Relating to Rehydration Properties of Spray-Dried Camel Milk Powder during Accelerated Storage. Food Chem. 2021, 361, 130136. DOI: 10.1016/j.foodchem.2021.130136.
  • Murrieta-Pazos, I.; Gaiani, C.; Galet, L.; Cuq, B.; Desobry, S.; Scher, J. Comparative Study of Particle Structure Evolution During Water Sorption: Skim and Whole Milk Powders. Colloids Surf. B Biointerfaces 2011, 87, 1–10. DOI: 10.1016/j.colsurfb.2011.05.001.
  • Gomes, M. H. G.; Kurozawa, L. E. Compositional Aspect and Mechanism of Surface Formation of Spray-Dried Microparticles with Surface-Active Rice Protein Hydrolysates. J. Food Eng. 2024, 371, 112007. DOI: 10.1016/j.jfoodeng.2024.112007.
  • Carmona, P. A. O.; Tonon, R. V.; da Cunha, R. L.; Hubinger, M. D. Influence of Emulsion Properties on the Microencapsulation of Orange Essential Oil by Spray Drying. J Coll Sci Biotechnol 2013, 2, 130–139. DOI: 10.1166/jcsb.2013.1042.
  • Adler-Nissen, J. Enzymic Hydrolysis of Food Proteins; Elsevier: London, 1986, p. 427.
  • Zhao, Q.; Xiong, H.; Selomulya, C.; Chen, X. D.; Zhong, H.; Wang, S.; Sun, W.; Zhou, Q. Enzymatic Hydrolysis of Rice Dreg Protein: Effects of Enzyme Type on the Functional Properties and Antioxidant Activities of Recovered Proteins. Food Chem. 2012, 134, 1360–1367. DOI: 10.1016/j.foodchem.2012.03.033.
  • Cai, Y. Z.; Corke, H. Production and Properties of Spray-Dried Amaranthus Betacyanin Pigments. J. Food Sci. 2000, 65, 1248–1252. DOI: 10.1111/j.1365-2621.2000.tb10273.x.
  • Jafari, S. M.; He, Y.; Bhandari, B. Encapsulation of Nanoparticles of D-Limonene by Spray Drying: Role of Emulsifiers and Emulsifying Techniques. Dry. Technol. 2007, 25, 1069–1079. DOI: 10.1080/07373930701396758.
  • Avramenko, N. A.; Low, N. H.; Nickerson, M. T. The Effects of Limited Enzymatic Hydrolysis on the Physicochemical and Emulsifying Properties of a Lentil Protein Isolate. Food Res. Int. 2013, 51, 162–169. DOI: 10.1016/j.foodres.2012.11.020.
  • Klost, M.; Drusch, S. Functionalisation of Pea Protein by Tryptic Hydrolysis: Characterisation of Interfacial and Functional Properties. Food Hydrocoll. 2019, 86, 134–140. DOI: 10.1016/j.foodhyd.2018.03.013.
  • Xu, X.; Liu, W.; Liu, C.; Luo, L.; Chen, J.; Luo, S.; McClements, D. J.; Wu, L. Effect of Limited Enzymatic Hydrolysis on Structure and Emulsifying Properties of Rice Glutelin. Food Hydrocoll. 2016, 61, 251–260. DOI: 10.1016/j.foodhyd.2016.05.023.
  • Singh, K. K.; Mridula, D.; Rehal, J.; Barnwal, P. Flaxseed: A Potential Source of Food, Feed and Fiber. Crit. Rev. Food Sci. Nutr. 2011, 51, 210–222. DOI: 10.1080/10408390903537241.
  • Zhang, J.; Bing, L.; Reineccius, G. A. Formation, Optical Property and Stability of Orange Oil Nanoemulsions Stabilized by Quallija Saponins. LWT-Food Sci. Technol. 2015, 64, 1063–1070. DOI: 10.1016/j.lwt.2015.07.034.
  • Paulo, B. B.; Alvim, I. D.; Reineccius, G.; Prata, A. S. Performance of Oil-in-Water Emulsions Stabilized by Different Types of Surface-Active Components. Colloids Surf. B Biointerfaces 2020, 190, 110939. DOI: 10.1016/j.colsurfb.2020.110939.
  • Landström, K.; Alsins, J.; Bergenståhl, B. Competitive Protein Adsorption between Bovine Serum Albumin and β-Lactoglobulin during Spray-Drying. Food Hydrocoll. 2000, 14, 75–82. DOI: 10.1016/S0268-005X(99)00047-8.
  • Drusch, S.; Hamann, S.; Berger, A.; Serfert, Y.; Schwarz, K. Surface Accumulation of Milk Proteins and Milk Protein Hydrolysates at the Air-Water Interface on a Time-Scale Relevant for Spray-Drying. Food Res. Int. 2012, 47, 140–145. DOI: 10.1016/j.foodres.2011.04.037.
  • Fang, Z.; Wang, R.; Bhandari, B. Effects of Type and Concentration of Proteins on the Recovery of Spray-Dried Sucrose Powder. Dry. Technol. 2013, 31, 1643–1652. DOI: 10.1080/07373937.2013.770011.
  • Adhikari, B.; Howes, T.; Wood, B. J.; Bhandari, B. R. The Effect of Low Molecular Weight Surfactants and Proteins on Surface Stickiness of Sucrose during Powder Formation through Spray Drying. J. Food Eng. 2009, 94, 135–143. DOI: 10.1016/j.jfoodeng.2009.01.022.
  • Fyfe, K.; Kravchuk, O.; Nguyen, A. V.; Deeth, H.; Bhandari, B. Influence of Dryer Type on Surface Characteristics of Milk Powders. Dry. Technol. 2011, 29, 758–769. DOI: 10.1080/07373937.2010.538481.
  • Roos, Y.; Karel, M. Phase Transitions of Mixtures of Amorphous Polysaccharides and Sugars. Biotechnol. Prog. 1991, 7, 49–53. DOI: 10.1021/bp00007a008.
  • Sosnik, A.; Seremeta, K. P. Advantages and Challenges of the Spray-Drying Technology for the Production of Pure Drug Particles and Drug-Loaded Polymeric Carriers. Adv. Colloid Interface Sci. 2015, 223, 40–54. DOI: 10.1016/j.cis.2015.05.003.
  • Juarez-Enriquez, E.; Olivas, G. I.; Zamudio-Flores, P. B.; Ortega-Rivas, E.; Perez-Vega, S.; Sepulveda, D. R. Effect of Water Content on the Flowability of Hygroscopic Powders. J. Food Eng. 2017, 205, 12–17. DOI: 10.1016/j.jfoodeng.2017.02.024.
  • Pereyra-Castro, S. C.; Alamilla-Beltrán, L.; Villalobos-Castillejos, F.; Porras-Saavedra, J.; Pérez-Pérez, V.; Gutiérrez-López, G. F.; Jiménez-Aparicio, A. R. Microfluidization and Atomization Pressure During Microencapsulation Process: Microstructure, Hygroscopicity, Dissolution and Flow Properties. LWT 2018, 96, 378–385. DOI: 10.1016/j.lwt.2018.05.042.
  • Porras-Saavedra, J.; Alamilla-Beltrán, L.; Lartundo-Rojas, L.; de Jesús Perea-Flores, M.; Yáñez-Fernández, J.; Palacios-González, E.; Gutiérrez-López, G. F. Chemical Components Distribution and Morphology of Microcapsules of Paprika Oleoresin by Microscopy and Spectroscopy. Food Hydrocoll. 2018, 81, 6–14. DOI: 10.1016/j.foodhyd.2018.02.005.
  • Gaiani, C.; Morand, M.; Sanchez, C.; Tehrany, E. A.; Jacquot, M.; Schuck, P.; Jeantet, R.; Scher, J. How Surface Composition of High Milk Proteins Powders Is Influenced by Spray-Drying Temperature. Colloids Surf. B Biointerfaces 2010, 75, 377–384. DOI: 10.1016/j.colsurfb.2009.09.016.
  • Fernandes, R. V.; de, B.; Borges, S. V.; Botrel, D. A.; Silva, E. K.; Costa, J. M. G.; Da; Queiroz, F. Microencapsulation of Rosemary Essential Oil: Characterization of Particles. Dry. Technol. 2013, 31, 1245–1254. DOI: 10.1080/07373937.2013.785432.
  • Huynh, T. V.; Caffin, N.; Dykes, G. A.; Bhandari, B.; Huynh, T. V.; Caffin, N.; Dykes, G. A.; Bhandari, B. Optimization of the Microencapsulation of Lemon Myrtle Oil Using Response Surface Methodology. Dry. Technol. 2008, 26, 357. DOI: 10.1080/07373930801898182.
  • Peng, Q.; Meng, Z.; Luo, Z.; Duan, H.; Ramaswamy, H. S.; Wang, C. Effect of Emulsion Particle Size on the Encapsulation Behavior and Oxidative Stability of Spray Microencapsulated Sweet Orange Oil (Citrus Aurantium Var. Dulcis). Foods 2022, 12, 116. DOI: 10.3390/foods12010116.
  • Soottitantawat, A.; Yoshii, H.; Furuta, T.; Ohkawara, M.; Linko, M. Microencapsulation by Spray Drying: Influence of Emulsion Size on the Retention of Volatile Compounds. Food Eng. Phys. Prop. 2003, 68, 2256–2262. DOI: 10.1111/j.1365-2621.2003.tb05756.x.
  • Elversson, J.; Millqvist-Fureby, A. Aqueous Two-Phase Systems as a Formulation Concept for Spray-Dried Protein. Int J. Pharm. 2005, 294, 73–87. DOI: 10.1016/j.ijpharm.2005.01.015.
  • Munoz-Ibanez, M.; Nuzzo, M.; Turchiuli, C.; Bergenståhl, B.; Dumoulin, E.; Millqvist-Fureby, A. The Microstructure and Component Distribution in Spray-Dried Emulsion Particles. Food Struct. 2016, 8, 16–24. DOI: 10.1016/j.foostr.2016.05.001.
  • Andersen, A. B.; Risbo, J.; Andersen, M. L.; Skibsted, L. H. Oxygen Permeation through an Oil-Encapsulating Glassy Food Matrix Studied by ESR Line Broadening Using a Nitroxyl Spin Probe. Food Chem. 2000, 70, 499–508. DOI: 10.1016/S0308-8146(00)00102-3.
  • Sosulski, F. W.; Imafidon, G. I. Amino Acid Composition and Nitrogen-to-Protein Conversion Factors for Animal and Plant Foods. J. Agric. Food Chem. 1990, 38, 1351–1356. DOI: 10.1021/jf00096a011.