532
Views
31
CrossRef citations to date
0
Altmetric
Research Article

Secondary Metabolite Biosynthesis: The First Century

Pages 1-40 | Published online: 29 Sep 2008

REFERENCES

  • Aberhart, D. J. 1977. Biosynthesis of β-lactam antibiotics. Tetrahedron 33:1545–1559.
  • Al-Rawi, J. M., Elvidge, J. A., Jaiswal, D. K., Jones, J. R., and Thomas, R. 1974. Use of tritium nuclear magnetic resonance for the direct location of 3H in biosynthetically labeled penicillic acid. Chem. Comm. 220–221.
  • Anslow, W. K. and Raistrick, H. 1931. Studies in the biochemistry of micro-organisms. XIX. 6-Hydroxy-2-methylbenzoic acid, a product of the metabolism of glucose by Penicillium griseo-fulvum Dierckx. Biochem. J. 25:39–44.
  • Arigoni, D. 1959. Biogenesis of terpenes in moulds and higher plants. In: Biosynthesis of Terpenes and Sterols. pp. 231–244. Ciba Foundation Symposium. Wolstenholme, G. E. W. and O’Connor, M., Eds., Little, Brown and Company, Boston, MA.
  • Arnstein, H. R. V. and Bentley, R. 1950. Kojic acid biosynthesis from 1-C14-glucose. Nature 166:948–950.
  • Arnstein, H. R. V. and Bentley, R. 1953a. The biosynthesis of kojic acid. I. Production from [1-14C] and [3:4-14C2]glucose and [2-14C]-1:3-dihydroxyacetone. Biochem. J. 54:493–508.
  • Arnstein, H. R. V. and Bentley, R. 1953b. The biosynthesis of kojic acid. III. The incorporation of labelled small molecules into kojic acid. Biochem. J. 54:517–522.
  • Arnstein, H. R. V. and Bentley, R. 1956. The biosynthesis of kojic acid. IV. Production from pentoses and methyl pentoses. Biochem. J. 62:403–411.
  • Arnstein, H. R. V. and Grant, P. T. 1953. Biochem. J. 55:v (single page).
  • Arnstein, H. R. V. and Grant, P. T. 1954a. The biosynthesis of penicillin. 1. The incorporation of some amino acids into penicillin. Biochem. J. 57:353–359.
  • Arnstein, H. R. V. and Grant, P. T. 1954b. The biosynthesis of penicillin. 2. The incorporation of cystine into penicillin. Biochem. J. 57:360–368.
  • Arnstein, H. R. V. and Morris, D. 1960. The structure of a peptide, containing α-aminoadipic acid, cystine and valine, present in the mycelium of Penicillium chrysogenum. Biochem. J. 76:357–361.
  • Arnstein, H. R. V., Artman, M., Morris, D., and Toms, E. J. 1960. Sulphur-containing amino acids and peptides in the mycelium of Penicillium chrysogenum. Biochem. J. 76:353–357.
  • Arreguin, B., Bonner, J., and Wood, B. J. 1951. Studies on the mechanism of rubber formation in the Guayule. III. Experiments with isotopic carbon. Arch. Biochem. 31:234–247.
  • Banko, G., Demain, A. L., and Wolfe, S. 1987. δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACV synthetase): a multifunctional enzyme with broad substrate specificity for the synthesis of penicillin and cephalosporin precursors. J. Am. Chem. Soc. 109:2858–2860.
  • Bassett, E. W. and Tanenbaum, S. W. 1960. Acetyl-coenzyme A in patulin biosynthesis. Biochim. Biophys. Acta 40:535–537.
  • Behrens, O. K., Corse, J., Jones, R. G., Kleiderer, E. C., Soper, Q. F., van Abeele, F. R., Larson, L. M., Sylvester, J. C., Haines, W. J., and Carter, H. E. 1948. Biosynthesis of penicillins. II. Utilization of deuterophenylacetyl-N15-dl-valine in penicillin biosynthesis. J. Biol. Chem. 175:765–769.
  • Bennett, J. W. and Bentley, R. 1989. What’s in a name? — microbial secondary metabolism. In: Advances in Applied Microbiology. Volume 34, pp. 1–28. Neidelman, S. L., Ed., Academic Press, San Diego, CA.
  • Bentley, L. E. 1952. Occurrence of malonic acid in plants. Nature 170:847–848.
  • Bentley, R. 1954. Itaconic acid biosynthesis. Fed. Proc. 13:182 (single page), Abstract number 604.
  • Bentley, R. 1955a. Glucose aerodehydrogenase (glucose oxidase). In: Methods in Enzymology. Volume 1, pp. 340–345. Colowick, S. P. and Kaplan, N. O. Eds., Academic Press, New York.
  • Bentley, R. 1955b. Kojic acid biosynthesis from pentoses. Bact. Proc. 55:130 (single page), Abstract number P 59.
  • Bentley, R. 1957. Mechanism for the decarboxylation of aconitic acid. Chem. Comm. 20–21.
  • Bentley, R. 1961. The role of malonate in the biosynthesis of mold tropolones. Fed. Proc. 20:80 (single page), Abstract program number, 279.
  • Bentley, R. 1962. Biochemistry of fungi. Ann. Rev. Biochem. 31:589–624.
  • Bentley, R. 1963. Biosynthesis of tropolones in Penicillium stipitatum. III. Tracer studies on the formation of stipitatonic and stipitatic acids. J. Biol. Chem. 238:1895–1902.
  • Bentley, R. 1965. The role of decarboxylation in the secondary metabolism of molds. In: Biogenesis of Antibiotic Substances. pp. 241–254. Vanek, Z. and Hostálek, Z., Eds., Publishing House, Czechoslovak Academy of Sciences, Prague.
  • Bentley, R. 1985. The use of stable isotopes at Columbia University’s College of Physicians and Surgeons. Trends in Biochem. Sci. 10:171–174.
  • Bentley, R. 1990. The shikimate pathway — a metabolic tree with many branches. Crit. Rev. Biochem. Mol. Biol. 25:307–384.
  • Bentley, R. 1999. John Norman Collie: chemist and mountaineer. J. Chem. Educ. 76: 41–47.
  • Bentley, R. and Keil, J. G. 1961. The role of acetate and malonate in the biosynthesis of penicillic acid. Proc. Chem. Soc. 111–112.
  • Bentley, R. and Neuberger, A. 1949. The mechanism of action of notatin. Biochem. J. 45:584–590.
  • Bentley, R. and Thiessen, C. P. 1955. Cis-aconitic decarboxylase. Science 122:330 (single page).
  • Bentley, R. and Thiessen, C. P. 1957a. Biosynthesis of itaconic acid in Aspergillus terreus. I. Tracer studies with C14-labeled substrates. J. Biol. Chem. 226:673–687.
  • Bentley, R. and Thiessen, C. P. 1957b. Biosynthesis of itaconic acid in Aspergillus terreus. III. The properties and reaction mechanism of cis-aconitic acid decarboxylase. J. Biol. Chem. 226:703–720.
  • Bernfeld, P. 1963. Biogenesis of Natural Compounds. The Macmillan Company, New York.
  • Birch, A. J. 1956. Biosynthetic theories in organic chemistry. In: Perspectives in Organic Chemistry. pp. 134–154. Todd, A., Ed., Interscience Publishers, New York.
  • Birch, A. J. 1968. Polyketide metabolism. Ann. Rev. Plant Physiol. 19:321–332.
  • Birch, A. J. 1976. Sir Robert Robinson: a contemporary historical assessment and a personal memoir. Journal and Proceedings, Royal Society of New South Wales 109:151–160.
  • Birch, A. J. 1995. To See the Obvious. American Chemical Society, Washington, DC.
  • Birch, A. J. and Donovan, F. W. 1953a. Studies in relation to biosynthesis. I. Some possible routes to derivatives of orcinol and phloroglucinol. Austral. J. Chem. 6:360–368.
  • Birch, A. J. and Donovan, F. W. 1953b. Studies in relation to biosynthesis. III. The structure of eleutherinol. Austral. J. Chem. 6:373–378.
  • Birch, A. J., Blance, G. E., and Smith, H. 1958. Studies in relation to biosynthesis. XVIII. Penicillic acid. J. Chem. Soc. 4582–4583.
  • Birch, A. J., Donovan, F. W., and Moewus, F. 1953. Biogenesis of flavonoids in Chlamydomonas eugametos. Nature 172:902–904.
  • Birch, A. J., Massy-Westropp, R. A., and Moye, C. J. 1955a. The biosynthesis of 6-hydroxy-2-methylbenzoic acid. Chem. Ind. 683–684.
  • Birch, A. J., Massy-Westropp, R. A., and Moye, C. J. 1955b. Studies in relation to biosynthesis. VII. 2-Hydroxy-6-methylbenzoic acid in Penicillium griseofulvum Dierckx. Austral. J. Chem. 8:539–544.
  • Birch, A. J., Schofield, J., and Smith, H. 1958. The origin of the C5-unit in auroglaucin. Chem. Ind. 1321 (single page).
  • Birch, A. J., English, R. J., Massy-Westropp, R. A., and Smith, H. 1957. The origin of the terpenoid structures in mycelianamide and mycophenolic acid. Mevalonic acid as an irreversible precursor in terpene biosynthesis. Proc. Chem. Soc. 233–234.
  • Birch, A. J., English, R. J., Massy-Westropp, R. A., and Smith, H. 1958a. Studies in relation to biosynthesis. Part XV. Origin of the terpenoid structures in mycelianamide and mycophenolic acid. J. Chem. Soc. 369–375.
  • Birch, A. J., English, R. J., Massy-Westropp, R. A., Slaytor, M, and Smith, H. 1958b. Studies in relation to biosynthesis. Part XIV. The origin of the nuclear methyl groups in mycophenolic acid. J. Chem. Soc. 365–368.
  • Birkinshaw, J. H. and Raistrick, H. 1932. Studies in the biochemistry of micro-organisms. XXIII. Puberulic acid, C8H6O6, and an acid C8H4O6, new products of the metabolism of glucose by Penicillium puberulum Bainier and Penicillium aurantio-virens Biourge. Biochem. J. 26::441–453.
  • Birkinshaw, J. H., Chambers, A. R., and Raistrick, H. 1942. Studies in the biochemistry of micro-organisms. 70. Stipitatic acid, C8H6O5, a metabolic product of Penicillium stipitatum Thom. Biochem. J. 36:242–251.
  • Blackwood, A. C. and Neish, A. C. 1957. Pyocyanine formation from labelled substrates by Pseudomonas aeruginosa. Can. J. Microbiol. 3:165–169.
  • Bloch, K. 1965. The biological synthesis of cholesterol. Science 150:19–28.
  • Bonner, J. 1949. Synthesis of isoprenoid compounds in plants. J. Chem. Educ. 26:628–631.
  • Bowden, K. and Marion, L. 1951. The biogenesis of alkaloids. IV. The formation of gramine from tryptophan in barley. Can. J. Chem. 29:1037–1042.
  • Brown, S. A. and Byerrum, R. V. 1952. The origin of the methyl group of nicotine formed by Nicotiana rustica L. J. Am. Chem. Soc. 74:1523–1526.
  • Buchanan, J. M. and Hastings, A. B. 1946. The use of isotopically marked carbon in the study of intermediary metabolism. Physiol. Revs. 26:120–155.
  • Bu’Lock, J. D. 1961. Intermediary metabolism and antibiotic synthesis. In: Advances in Applied Microbiology. Vol. 3, pp. 293–342. Umbreit, W. W., Ed., Academic Press, New York.
  • Bu’Lock, J. D. 1965. The Biosynthesis of Natural Products. An Introduction to Secondary Metabolism. McGraw-Hill, London.
  • Bu’Lock, J. D. and Smalley, H. M. 1961. Biosynthesis of aromatic substances from acetyl- and malonyl-CoA. Proc. Chem. Soc. 209–211.
  • Cane, D. E., Ed. 1997. Polyketide and Nonribosomal Polypeptide Biosynthesis. Chem. Revs. 97:2463–2706 ( this “Special Thematic Issue” contains 13 articles).
  • Claisen, L. and Hori, E. 1891. Ueber eine Synthese der Aconitsäure. Ber. deutsch. chem. Gesellschaft 24:120–127.
  • Clarke, H. T., Johnson, J. R., and Robinson, Sir Robert. 1949. The Chemistry of Penicillin. Princeton University Press, Princeton, NJ.
  • Cleland, W. W. and Johnson, M. J. 1954. Tracer experiments on the mechanism of citric acid formation by Aspergillus niger. J. Biol. Chem. 208:679–689.
  • Collie, J. N. 1893. The production of naphthalene derivatives from dehydracetic acid. J. Chem. Soc. 63:329–337.
  • Collie, J. N. 1907a. Derivatives of the multiple ketene group. Proc. Chem. Soc. 23:230–231.
  • Collie, J. N. 1907b. Derivatives of the multiple keten group. J. Chem. Soc. 91:1806–1813.
  • Corcoran J. W. and Chick, M. 1966. Biochemistry of the macrolide antibiotics. In: Biosynthesis of Antibiotics. Vol. I, pp. 159–201. Snell, J. F., Ed., Academic Press, New York.
  • Corcoran, J. W., Kaneda, T., and Butte, J. C. 1960. Actinomycete antibiotics. I. The biological incorporation of propionate into the macrocyclic lactone of erythromycin. J. Biol. Chem. 235:PC 29–PC 30.
  • Corzo, R. H. 1953. Biogenesis of Itaconic Acid. Ph.D. thesis, Stanford University.
  • Corzo, R. H. and Tatum, E. L. 1953. Biosynthesis of itaconic acid. Fed. Proc. 12:470 (single page), Abstract number 1544.
  • Curtis, R. F., Harries, P. C., Hassall, C. H., and Levi, J. D. 1964. The biosynthesis of phenols. V. The relationships of some phenolic metabolites of mutants of Aspergillus terreus Thom, I.M.I. 16043. Biochem. J. 90:43–51.
  • Dauben, W. G. and Richards, J. H. 1956. The biosynthesis of the triterpene, eburicoic acid. J. Am. Chem. Soc. 78:5329–5335.
  • Dauben, W. G., Ban, Y., and Richards, J. H. 1957. The biosynthesis of the triterpene, eburicoic acid: the utilization of methyl-labeled acetate. J. Am. Chem. Soc. 79:968–970.
  • Dauben, W. G., Fonken, G. J., and Boswell, G. A. 1957. The biosynthetic precursor of the extra carbon atom in the side-chain of steroids. J. Am. Chem. Soc. 79:1000–1001.
  • Davies, J. 1992. Discussion of paper by Demain. In: Secondary Metabolites: Their Function and Evolution. p. 21. Ciba Foundation Symposium 171. Chadwick, D. J. and Whelan, J., Eds., John Wiley & Sons, Chichester.
  • Davis, B. D. 1951. Aromatic biosynthesis. I. The role of shikimic acid. J. Biol. Chem. 191:315–325.
  • Davis, B. D. 1955. Intermediates in amino acid biosynthesis. Adv. Enzymol. 16:247–312.
  • Demain, A. L. 1973. Mutation and the production of secondary metabolites. Adv. Appl. Microbiol. 16:177–202.
  • Demain, A. 1992. Microbial secondary metabolism: a new theoretical frontier for academia, a new opportunity for industry. In: Secondary Metabolites: Their Function and Evolution. pp. 3–23. Ciba Foundation Symposium 171. Chadwick, D. J. and Whelan, J., Eds., John Wiley & Sons, Chichester
  • Dewar, M. J. S. 1945. Structure of stipitatic acid. Nature 155:50–51.
  • Diaper, D. G. M., Kirkwood, S., and Marion, L. 1951. The biogenesis of alkaloids. III. A study of hyoscyamine biosynthesis using isotopic putrescine. Can. J. Chem. 29:964–969.
  • Dubeck, M. and Kirkwood, S. 1952. The origin of the O- and N-methyl groups of the alkaloid ricinine. J. Biol. Chem. 199:307–312.
  • Dugan, J. J., de Mayo, P., Nisbet, M., Robinson, J. R., and Anchel, M. 1966. Terpenoids. XIV. The constitution and biogenesis of marasmic acid. J. Am. Chem. Soc. 88:2838–2844.
  • Ehrensvärd, G. and Gatenbeck, S. 1960. Die metabolische Herkunft polyzyklischer Chinone. Main Lectures, XVIIth. International Congress of Pure and Applied Chemistry, II, 99–111.
  • Eschenmoser, A., Ruzicka, L., Jeger, O., and Arigoni, D. 1955. Zur Kenntnis der Triterpene. 190. Mitteilung. Eine stereochemische Interpretation der biogenetischen Isoprenregel bei den Triterpenen. Helv. Chim. Acta 38:1890–1904.
  • Evans, G. E., Garson, M. J., Griffin, D. A., Leeper, F. J., and Staunton, J. 1978. Biomimetic syntheses of phenols from polyketones. In: Further Perspectives in Organic Chemistry. Ciba Foundation Symposium, 53. Elsevier, Amsterdam.
  • Fischer, H. O. L. and Dangschat, G. 1935. Zur Konfiguration der Shikimisäure. Helv. Chim. Acta 18:1206–1213.
  • Fischer, H. O. L. and Dangschat, G. 1937. Über die Konfiguation der Shikimisäure und ihren Abbau zur Glucodesonsäure. Helv. Chim. Acta 20:705–716.
  • Florey, H. W., Gilliver, K., Jennings, M. A., and Sanders, A. G. 1946. Mycophenolic acid. An antibiotic from Penicillium brevi-compactum Dierckx. The Lancet. Issue of January 12, pp. 46–49.
  • Florkin, M. 1979a. The energetics of biosynthesis. In: Comprehensive Biochemistry. Vol. 33A, pp. 29–44. Florkin, M. and Stotz, E. H., Eds., Elsevier Publishing Co., Amsterdam.
  • Florkin, M. 1979b. Biosynthesis of fatty acids and glycerides. In: Comprehensive Biochemistry. Vol. 33A, pp. 171–192. Florkin, M. and Stotz, E. H., Eds., Elsevier, Amsterdam.
  • Floss, H. G. 1986. The shikimate pathway — an overview. In: The Shikimic Acid Pathway. Recent Advances in Phytochemistry, Vol. 20, pp. 13–55. Conn, E. E., Ed., Plenum Press, New York.
  • Floss, H. G., Keller, P. J., and Beale, J. M. 1986. Studies in the biosynthesis of antibiotics. J. Natl. Prod. 6:957–970.
  • Folkers, K., Shunk, C. H., Linn, B. O., Robinson, F. M., Wittreich, P. E., Huff, J. W., Gilfillan, J. L., and Skeggs, H. R. 1959. Discovery and elucidation of mevalonic acid. In: Biosynthesis of Terpenes and Sterols. Ciba Foundation Symposium. pp. 20–45. Wolstenholme, G. E. W. and O’Connor, M., Eds., Little, Brown and Company, Boston, MA.
  • Franck, B. 1960. Biosynthese der Alkaloide. Naturwiss. 47:169–175.
  • Friedman, S. M., Kaneda, T., and Corcoran, J. W. 1964. Antibiotic glycosides. V. A comparison of 2-methylmalonate and propionate as precursors of the C21 branched chain lactone in erythromycin. J. Biol. Chem. 239:2386–2391.
  • Fruton, J. S. 1972. Molecules and Life. Historical Essays on the Interplay of Chemistry and Biology. Wiley-Interscience, New York.
  • Gatenbeck, S. 1960. On the biosynthesis of the pigments of Penicillium islandicum. II. Acta Chem. Scand. 14:296–302.
  • Gatenbeck, S. and Barbesgård, P. 1960. On the biosynthesis of the pigments of Penicillium islandicum. III. Acta Chem. Scand. 14:230–231.
  • Gatenbeck, S. and Hermodsson, S. 1965. Enzymic synthesis of the aromatic product alternariol. Acta Chem. Scand. 19:65–71.
  • Gatenbeck, S. and Mosbach, K. 1959. Acetate carboxyl oxygen (18O) as donor for phenolic hydroxy groups of orsellinic acid produced by fungi. Acta Chem. Scand. 13:1561–1564.
  • Geismann, T. A. and Crout, D. H. G. 1969. Organic Chemistry of Secondary Plant Metabolism. p. 6. Freeman, Cooper & Co., San Francisco, CA.
  • Geismann, T. A. and Swain, T. 1957. Biosynthesis of flavonoiod compounds in higher plants. Chem. Ind. 984 ( single page).
  • Gerber, N. N., McInnes, A. G., Smith, D. G., Walter, J. A., Wright, J. L. C., and Vining, L. C. 1978. Biosynthesis of prodiginines. 13C resonance assignments and enrichment patterns in nonyl-, cyclononyl-, methylcyclodecyl-, and butyrylcycloheptyl-prodiginine produced by actinomycete cultures supplemented with 13C-labeled acetate and 15N-labeled nitrate. Can. J. Chem. 56:1155–1163.
  • Gerzon, K., Flynn, E. H., Sigal, M. V., Wiley, P. F., Monahan, R., and Quarck, U. C. 1956. Erythromycin. VIII. Structure of dihydroerythronolide. J. Am. Chem. Soc. 78:6396–6408.
  • Gower, B. C. and Leete, E. 1963. Biosynthesis of gramine: the immediate precursor of the alkaloid. J. Am. Chem. Soc. 85:3683–3685.
  • Grisebach, H. 1957. Zur Biogenese des Cyanidins. I. Mitt.: Versuche mit Acetate-[1-14C] und Acetate-[2–14C]. Zeit. Naturforsch. 12B:227–231.
  • Grisebach, H., Achenbach, H., and Hofheinz, W. 1960. Untersuchungen zur Biogenese des Erythromycins. Zeit. Naturforsch. 15B:560–568.
  • Grisebach, H., Hofheinz, W., and Achenbach, H. 1962. Zur Biogenese der Makrolide. VI.: Über die Beteiligung von Methylmalonsäure bei der Biogenese des Erythromycins. Zeit. Naturforsch. 17B:64–65.
  • Gulland, J. M. and Robinson, R. 1923. The morphine group. I. A discussion of the constitutional problem. J. Chem. Soc. 123:980–998.
  • Gulland, J. M. and Robinson, R. 1924–1925. The constitution of codeine and thebaine. Memoirs Proceedings Manchester Literary and Philosophical Society 69:79–86.
  • Haas, P. and Hill, T. G. 1913. An Introduction to the Chemistry of Plant Products. Longmans, Green and Co., London.
  • Hall, E. S., McCapra, F., Money, T., Fukumoto, K., Hanson, J. R., Mootoo, B. S., Phillips, G. T., and Scott, A. I. 1966. Concerning the terpenoid origin of indole alkaloids: biosynthetic mapping by direct mass spectrometry. Chem. Comm. 348–350.
  • Hall, J. A. 1933. Biogenetics in the terpene series. Chem. Rev. 13:479–499.
  • Hall, J. A. 1937. A system of structural relationships in phytochemistry. Chem. Rev. 20:305–344.
  • Harris, Th. M., Harris, C. M., and Hindley, K. B. 1974. Biogenetic-type syntheses of polyketide metabolites. In: Fortschritte der Chemie organischen Naturstoffe. Vol. 31, pp. 217–282. Herz, W., Grisebach, H., and Kirby, G. W., Eds., Springer-Verlag, New York.
  • Haslam, E. 1985. Metabolites and Metabolism. A Commentary on Secondary Metabolism. Clarendon Press, Oxford.
  • Haslam, E. 1993. Shikimic Acid. Metabolism and Metabolites. John Wiley & Sons, Chichester.
  • Hassall, C. H. 1965. The biosynthesis of geodoxin and related compounds. In: Biogenesis of Antibiotic Substances. pp. 51–59. Vanek, Z. and Hostálek, Z., Eds., Publishing House, Czechoslovak Academy of Sciences, Prague.
  • Hassall, C. H. and McMorris, T. C. 1959. The constitution of geodoxin, a metabolic product of Aspergillus terreus Thom. J. Chem. Soc. 2831–2834.
  • Heilbron, I. M., Kamm, E. D., and Owens, W. M. 1926. The unsaponifiable matter from the oils of Elasmobranch fish. I. A contribution to the study of the constitution of squalene (spinacene). J. Chem. Soc. 129:1630–1644.
  • Hevesy, G. 1948. Historical sketch of the biological application of tracer elements. In: Cold Spring Harbor Symposia on Quantitative Biology. Vol. XIII, pp. 129–150. The Biological Laboratory, Cold Spring Harbor, New York.
  • Hobby, G. L. 1985. Penicillin: Meeting the Challenge. Yale University Press, New Haven, CT.
  • Howell, S. F., Thayer, J. D., and Labaw, L. W. 1948. Introduction of radioactive sulfur (S35) into the penicillin molecule by biosynthesis. Science 107:299–300.
  • Hubbard, R. and Rimington, C. 1950. The biosynthesis of prodigiosin, the tripyrrylmethene pigment from Bacillus prodigiosus (Serratia marcescens). Biochem. J. 46: 220–225.
  • Hunter, G. D. and Hockenhull, D. J. D. 1955. Actinomycete metabolism. Incorporation of C14-labeled compounds into streptomycin. Biochem. J. 59:268–272.
  • Hunter, G. D., Herbert, M., and Hockenhull, D. J. D. 1954. Actinomycete metabolism: origin of the guanidine groups in streptomycin. Biochem. J. 58:249–254.
  • Hutchinson, C. R. and Fujii, I. 1995. Polyketide synthase gene manipulation: a structure-function approach in engineering novel antibiotics. Ann. Rev. Microbiol. 49:201–238.
  • Jenssen, E. B., Larsen, H., and Ormerod, J. C. 1956. Formation of itaconic acid from the Krebs cycle tricarboxylic acids by extracts of Aspergillus terreus. Acta Chem. Scand. 10:1047 (single page).
  • Kaneda, T. and Corcoran, J. W. 1961. α-Methylmalonate incorporation into the branched chain lactone in erythromycin. Fed. Proc. 20:273 (single page).
  • Karow, E. O., Peck, R. L., Rosenblum, C., and Woodburg, D. T. 1952. Microbiological synthesis of C14-labeled streptomycin. J. Am. Chem. Soc. 74:3056–3059.
  • Keil, J. 1960. Biosynthesis of penicillic acid. Fed. Proc. 19:242 (single page), Abstract program number 1722.
  • Keil, J. 1961. The role of malonate in penicillic acid formation. Fed. Proc. 20:80 (single page), Abstract program number 280.
  • Kikuchi, M. and Nakahara, M. 1961. Sequence of pigment formation in the mycelia of defective strains obtained from Penicillium islandicum Sopp. by UV-irradiation. Bot. Mag. Tokyo 74:463–471.
  • Kirkwood, S. and Marion, L. 1951. The biogenesis of alkaloids. II. The origin of the methyl groups of hordenine and choline. Can. J. Chem. 29:30–36.
  • Kohler, R. E. 1975. The history of biochemistry: a survey. J. Hist. Biol. 8:275–318.
  • Kusai, K., Sekuzu, I., Hagihara, B., Okunuki, K., Yamauchi, S., and Nakai, M. 1960. Crystallization of glucose oxidase from Penicillium amagasakiense. Biochim. Biophys. Acta 40:555–557.
  • Leete, E. 1963. Alkaloid biogenesis. In: Biogenesis of Natural Compounds. pp. 739–796. Bernfeld, P., Ed., The Macmillan Company, New York.
  • Leete, E. 1969. Alkaloid biosynthesis. Adv. Enzymol. 32:373–422 (see p. 374 for quotation).
  • Leete, E., Marion, L., and Spenser, I. D. 1954. Biogenesis of hyoscyamine. Nature 174:650–651.
  • Lemke, P. A. and Brannon, D. R. 1972. Microbial synthesis of cephalosporin and penicillin compounds. In: Cephalosporins and Penicillins. Chemistry and Biology. pp. 370–437. Flynn, E. H., Ed., Academic Press, New York.
  • Lesaint, C., Tendille, C., and Papin, J.-L. 1962. L’acide malonique, acide prépondérant des pétales de Dahlia. Compt. Rend. 1002–1003.
  • Lipmann, F. 1948–1949. Biosynthetic mechanisms. The Harvey Lectures. Series XLIV. pp. 99–123. Charles C Thomas, Springfield, IL.
  • Louden, M. L. and Leete, E. 1962. The biosynthesis of tropic acid. J. Am. Chem. Soc. 84:1510–1511.
  • Lynen, F. 1959. Participation of acyl-CoA in carbon chain biosynthesis. J. Cell. Comp. Physiol. 54 (Suppl. I), 33–49.
  • Lynen, F. and Tada, M. 1961. Die biochemischen Grundlagen der “Polyacetat-Regel”. Angew. Chem. 73:513–520.
  • Maass, E. A. and Johnson, M. J. 1949. Penicillin uptake by bacterial cells. J. Bacteriol. 57:415–422.
  • MacDonald, J. C. 1967a. Aspergillic acid and related compounds. In: Antibiotics. Volume II. Biosynthesis. pp. 43–51. Gottlieb, D. and Shaw, P. D., Eds., SpringerVerlag, New York.
  • MacDonald, J. C. 1967b. Pyocyanine. In: Antibiotics. Volume II. Biosynthesis. pp. 52–65. Gottlieb, D. and Shaw, P. D., Eds., Springer-Verlag, New York.
  • Martin, E., Berky, J., Godzesky, C., Miller, P., Tome, J., and Stone, R. W. 1953. Biosynthesis of penicillin in the presence of C14. J. Biol. Chem. 203:239–250.
  • McCormick, J. R. D. 1965. Biosynthesis of the tetracyclines. In: Biogenesis of Antibiotic Substances. pp. 73–91. Vanek, Z. and Hostalek, Z., Eds., Publishing House, Czechoslovak Academy of Sciences, Prague.
  • McCormick, J. R. D., Miller, P. A., Growick, J. A., Sjolander, N. O., and Doerschuk, A. P. 1958. Two new tetracycline-related compounds: 7-chloro-5a(11a)-dehydrotetracycline and 5a-epi-tetracycline. A new route to tetracycline. J. Am. Chem. Soc. 80:5572–5573.
  • Money, T. 1970. Biogenetic-type synthesis of phenolic compounds. Chem. Rev. 70:553–560.
  • Morris, C. Editor. 1992. Academic Press Dictionary of Science and Technology. p. 262. Academic Press, San Diego, CA.
  • Morris, D. R. and Hager, L. P. 1966. Chloroperoxidase. I. Isolation and properties of the crystalline glycoprotein. J. Biol. Chem. 241:1763–1768.
  • Mosbach, K. 1959. Das Vorkommen von Orsellinsäure in Chaetomium cochliodes. Zeit. Naturforsch. 14B:69–70.
  • Mosbach, K. 1960. Die Biosynthese der Orsellinsäure und Penicillinsäure (1). Acta Chem. Scand. 14:457–464.
  • Mosbach, K. 1961. Die Rolle der Malonsäure in der Biosynthese der Orsellinsäure. Naturwiss. 15:525 (single page).
  • Mothes, K. and Schütte, H. R. 1963a. The biosynthesis of alkaloids. I. Angewandte Chemie, Int. Ed. English 2:341–357.
  • Mothes, K. and Schütte, H. R. 1963b. The biosynthesis of alkaloids. II. Angewandte Chemie, Int. Ed. English 2:441–458.
  • Müller, D. 1928. Studien über ein neues Enzym Glykoseoxydase. I. Biochem. Zeit. 199:136–170.
  • Nair, P. M. and Vining, L. C. 1965. Isophenoxazine synthase apoenzyme from Pycnoporus coccineus. Biochim. Biophys. Acta 96:318–327.
  • Nes, W. R. and McKean, M. L. 1977. Biochemistry of Steroids and Other Isoprenoids. University Park Press, Baltimore, MD.
  • Nicholas, H. J. 1963. The biogenesis of terpenes in plants. In: Biogenesis of Natural Compounds. pp. 641–691. Bernfeld, P., Ed., The Macmillan Company, New York.
  • Orchin, M., Kaplan, F., Macomber, R. S., Wilson, R. M., and Zimmer, H. 1980. The Vocabulary of Organic Chemistry. pp. 456–457. John Wiley & Sons, New York.
  • Ollis, W. D., Sutherland, I. O., Codner, R. C., Gordon, J. J., and Miller, G. A. 1960. The incorporation of propionate in the biosynthesis of ε-pyrromycinone (rutilantinone). Proc. Chem. Soc. 347–349.
  • Paech, K. 1950. Biochemie und Physiologie der Sekundären Pflanzenstoffe. Springer-Verlag, Berlin.
  • Pavia, N. L., Roberts, M. F., and Demain, A. L. 1993. The cyclohexane moiety of rapamycin is derived from shikimic acid in Streptomyces hygroscopicus. J. Indust. Microbiol. 12:423–428.
  • Pelletier, S. W. 1983. In: Alkaloids — Chemical and Biological Perspectives. Vol. 1, p. 2. Pelletier, S. W., Ed., John Wiley and Sons, New York.
  • Polanyi, M. and Szabo, A. L. 1934. On the mechanism of hydrolysis. The alkaline saponification of amyl acetate. Trans. Faraday Soc. 30:508–512.
  • Porter, J. W. and Spurgeon, S. L., Eds., 1981. Biosynthesis of Isoprenoid Compounds. Vol. 1. John Wiley and Sons, New York.
  • Porter, J. W. and Spurgeon, S. L., Eds. 1983. Biosynthesis of Isoprenoid Compounds. Vol. 2. John Wiley and Sons, New York.
  • Raistrick, H. and Clark, A. B. 1919. On the mechanism of oxalic acid formation by Aspergillus niger. Biochem. J. 13:329–344.
  • Raper, H. S. 1907. The condensation of acetaldehyde and its relation to the biochemical synthesis of fatty acids. J. Chem. Soc. 1831–1838.
  • Raphael, R. A. 1948. Mould metabolic products. Royal College of Science Journal XVIII:42–53.
  • Read, G. and Vining, L. C. 1959. Biogenesis of terphenylquinones. Chem. Ind. 1547–1548.
  • Rittenberg, D. and Bloch, K. 1944. The utilization of acetic acid for fatty acid synthesis. J. Biol. Chem. 154:311–312.
  • Rittenberg, D. and Bloch, K. 1945. The utilization of acetic acid for the synthesis of fatty acids. J. Biol. Chem. 160:417–424.
  • Rittenberg, D. and Waelsch, H. 1940. The source of carbon for urea formation. J. Biol. Chem. 136:799–800.
  • Roberts, W. 1874. Studies on biogenesis. Phil. Trans. Roy. Soc. 164:457–477.
  • Robinson, R. 1917a. A synthesis of tropinone. J. Chem. Soc. 111:762–768.
  • Robinson, R. 1917b. A theory of the mechanism of the phytochemical synthesis of certain alkaloids. J. Chem. Soc. 111:876–899.
  • Robinson, R. 1924. Organic chemistry. II. Homocyclic division. In: Annual Reports on the Progress of Chemistry for 1923. Vol. XX, p. 100. Greenaway, A. J. and Smith, C., Eds., Gurney & Jackson, London.
  • Robinson, R. 1934. Structure of cholesterol. Chem. Ind. 1062–1063.
  • Robinson, R. 1936. Synthesis in biochemistry (The fifth Pedler Lecture). J. Chem. Soc. 1079–1090.
  • Robinson, R. 1948. The structural relations of some plant products (The Trueman Wood Lecture). J. Royal Soc. Arts 96:795–808.
  • Robinson, R. 1955. The Structural Relations Of Natural Products, pp. 5–7. The Clarendon Press, Oxford.
  • Robinson, R. 1959. Chairman’s closing remarks. In: Biosynthesis of Terpenes and Sterols. p. 302 (single page). Ciba Foundation Symposium, Wolstenholme, G. E. W. and O’Connor, M., Eds., Little, Brown and Company, Boston, MA.
  • Rowley, D., Cooper, P. D., Roberts, P. W., and Smith, E. L. 1950. The site of action of penicillin. I. Uptake of penicillin in bacteria. Biochem. J. 46:157–161.
  • Ruhland, W. Ed. 1958. Encyclopedia of Plant Physiology. Volume X. The Metabolism of Secondary Plant Products. Springer-Verlag, Berlin.
  • Ruzicka, L. 1932. The life and work of Otto Wallach (The third Pedler Lecture). J. Chem. Soc. 1582–1597.
  • Ruzicka, L. 1953. The isoprene rule and the biogenesis of terpenic compounds. Experientia 9:357–367. (The section of this paper, pp. 362–366, titled “Biogenesis of steroids and terpenic compounds” was written “together with Eschenmoser, A. and Heusser, H.”).
  • Ruzicka, L. 1959. History of the isoprene rule (The Faraday Lecture). Proc. Chem. Soc. 341–360.
  • Sandermann, W. and Stockmann, H. 1957. Versuche über die Biosynthese von Terpenen, Harzsäuren und Sterinen mit radioaktiv markierten Muttersubstanzen. Fette, Seifen, Anstrichmittel 59:852–856.
  • Schlegel, H. G. 1986. General Microbiology, 6th ed., English translation, p. 340. Cambridge University Press, Cambridge.
  • Schoenheimer, R. 1946. The Dynamic State of Body Constituents, 2nd ed., Harvard University Press, Cambridge, MA.
  • Schöpf, C. and Lehmann, G. 1935. Die Synthese des Tropinons, Pseudopelletierins, Lobelanins, und vorwandter Alkaloide unter physiologischen Bedingungen. Justus Liebigs Annalen Chemie 518:1–37.
  • Scott, A. I. and Yalpani, M. 1967. A mass-spectrometric study of biosynthesis: conversion of deutero-m-cresol into patulin. Chem. Comm. 945–946.
  • Sebek, O. K. 1953. Biosynthesis of C14-labeled benzylpenicillin. Proc. Soc. Exp. Biol. Med. 84:170–172.
  • Shannon, L. M., Young, R. H., and Dudley, C. 1959. Malonate metabolism by plant tissues. Nature 183:683–684.
  • Simpson, T. J. 1998. Application of isotopic methods to secondary metabolic pathways. In: Biosynthesis, Polyketides and Vitamins, Leeper, F. J. and Vederas, J. C., Eds. Topics in Current Chemistry, pp. 1–48. Vol. 195. Springer-Verlag, Berlin.
  • Smith, A. D., Datta, S. P., Smith, G. H., Campbell, P. N., Bentley, R., and McKenzie, H. A., Eds. 1997. Oxford Dictionary of Biochemistry and Molecular Biology, Oxford University Press, Oxford.
  • Stermitz, F. R. and Rapoport, H. 1961. The biosynthesis of opium alkaloids. Alkaloid interconversions in Papaver somniferum and P. orientale. J. Am. Chem. Soc. 83:4045–4050.
  • Stevens, C. M., Vohra, P., and DeLong, C. 1954. Utilization of valine in the biosynthesis of penicillin. J. Biol. Chem. 211:297–300.
  • Stewart, A. W. 1920. Recent Advances in Organic Chemistry, 4th ed., p. 262. Longmans, Green and Company, London. (See also 7th edition, Volume II, by Stewart, A. W. and Graham, H., 1948, p. 408. Note that Stewart had been provided with information and material by Collie.)
  • Suhadolnik, R. J. and Chenoweth, R. C. 1958. Biosynthesis of gliotoxin. I. Incorporation of phenylalanine-1- and -2-C14. J. Am. Chem. Soc. 80:4391–4392.
  • Tamura, G. 1956. Hiochic acid, a new growth factor for Lactobacillus homohiochi and Lactobacillus heterohiochi. J. Gen. Appld. Microbiol. (Tokyo) 2:431–434.
  • Tanabe, M. 1973. Stable isotopes in biosynthetic studies. Biosynthesis, A Specialist Periodical Report. Vol. 2, pp. 241–299, Geismann, T. A., Senior Reporter, The Chemical Society, London.
  • Tanabe, M. and Detre, G. 1966. The use of 13C-labeled acetate in biosynthetic studies. J. Am. Chem. Soc. 88:4515–4517.
  • Tanenbaum, S. W. and Bassett, E. W. 1962. Cell-free biosynthesis of the tropolone ring. Biochim. Biophys. Acta 59:524–526.
  • Tatum, E. L. 1944. Biochemistry of fungi. Ann. Rev. Biochem. 13:667–684.
  • Tatum, E. L. and Adelberg, E. A. 1951. Origin of the carbon skeletons of isoleucine and valine. J. Biol. Chem. 190:843–852.
  • Tatum, E. L., Gross, S. R., Ehrensvärd, G., and Gjarnjobst, L. 1954. Synthesis of aromatic compounds by Neurospora. Proc. Natl. Acad. Sci. USA 40:271–276.
  • Tilden, W. A. 1882. Hydrocarbons of formula (C5H8)n. Chem. News. 46:120–121.
  • Tilden, W. A. 1884. On the decomposition of terpenes by heat. J. Chem. Soc. 45:410–420.
  • Tome, J., Zook, H. D., Wagner, R. B., and Stone, R. W. 1953. Degradation of radioactive penicillin G. J. Biol. Chem. 203:251–255.
  • van Baalen, C. and Foster, J. W. 1955. Some properties of, and especially the reversibility, of a bacterial malonic decarboxylase. Bacteriol. Proc. 55:143 (single page), Abstract P. 101.
  • Vanek, Z., Puza, M., Majer, J., and Dolezilova, L. 1961. Contribution to the biosynthesis of erythromycin in the presence of propionic acid-1-14C. Folia Microbiol. 6:408–410.
  • Vanek, Z., Majer, J., Babicky, A., Liebster, J., and Veres, K. 1958. Studies on the biosynthesis of erythromycin with the aid of substrates labeled with C14. Proceedings 2nd UN International Conference on the Peaceful Uses of Atomic Energy 25:143–146.
  • van Tamelen, E. E. 1961. Biogenetic-type syntheses of natural products. In: Fortschritte der Chemie organischer Naturstoffe. Vol. 19, pp. 242–290. Zechmeister, L., Ed., Springer-Verlag, Vienna.
  • Watkin, J. E., Underhill, E. W., and Neish, A. C. 1957. Biosynthesis of quercitin in buckwheat. II. Can. J. Biochem. Physiol. 35:229–237.
  • Weiss, U. and Edwards, J. M. 1980. The Biosynthesis of Aromatic Compounds. pp. 95–98. John Wiley & Sons, New York.
  • Wenkert, E. 1959. Alkaloid biosynthesis. Experientia 15:165–173.
  • Williams, C. G. 1860. On isoprene and caoutchine. Phil. Trans. Roy. Soc. 150:241–255.
  • Willstätter, R. 1903. Synthesen in der Tropingruppe. V. Synthese des Tropins. Justus Liebigs Annalen Chemie 326:23–42.
  • Wilsmore, N. T. M. and Stewart, A. W. 1907. Ketene. Nature 75:510 (single page).
  • Winstead, J. A. and Suhadolnik, R. J. 1960. Biosynthesis of gliotoxin. II. Further studies on the incorporation of carbon-14 and tritium-labeled precursors. J. Am. Chem. Soc. 82:1644–1647.
  • Winterstein, E. and Trier, G. 1910. Die Alkaloide. Eine Monographie der natürlichen Basen. Gebrüder Borntraeger, Berlin.
  • Wood, H. G., Werkman, C. H., Hemingway, A., and Nier, A. O. 1940. Heavy carbon as a tracer in bacterial fixation of carbon dioxide. J. Biol. Chem. 135:789–790.
  • Woodward, R. B. 1956. Neuere Entwicklungen in der Chemie der Naturstoffe. Angew. Chem. 68:13–20.
  • Woodward, R. B. and Bloch, K. 1953. The cyclization of squalene in cholesterol biosynthesis. J. Am. Chem. Soc. 75:2023–2024.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.