1,075
Views
43
CrossRef citations to date
0
Altmetric
Research Article

Microbial Biomass Estimation

&
Pages 97-112 | Published online: 10 Oct 2008

REFERENCES

  • Abelson J., Simon M., Brand L., Johnson M. Fluorescence Spectroscopy. Methods in Enzymology, L. Brand, M. L. Johnson. Academic Press. 1997; Vol. 278
  • Alexandrou O., Blackburn C. D., Adams M. R. Capacitance measurement to assess acid-induced injury to Salmonella enteritidis PT4. Int. J Food Microbiol. 1995; 271: 27–36, [CSA]
  • Andersson L., Strandberg L., Enfors S. O. Cell segregation and lysis have profound effects on the growth of Escherichia coli in high cell density fed batch cultures. Biotechnol. Prog. 1996; 12(2)190–195, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Arnold S., Gaensakoo R., Harvey L., McNeil B. Use of at-line and in-situ near-infrared spectroscopy to monitor biomass in an industrial fed-batch Escherichia coli process. Biotechnol Bioeng. 2002; 80(4)405–413, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Asami K., Yonezawa T., Wakamatsu H., Koyanagi N. Dielectric spectroscopy of biological cells. Bioelectrochem. Bioenerg. 1996; 40: 141–145, [CSA], [CROSSREF]
  • Asami K., Yonezawa T. Dielectric behavior of non-spherical cells in culture. Biochim. Biophys. Acta 1995; 1245: 317–324, [PUBMED], [INFOTRIEVE], [CSA]
  • Barer M. R., Harwood C. R. Bacterial viability and culturability. Adv. Microb. Physiol. 1999; 41: 93–137, [PUBMED], [INFOTRIEVE], [CSA]
  • Ben-Dov I., Willner I., Zisman E. Piezoelectric immunosensors for urine specimens of Chlamydia trachomatis employing quartz crystal microbalance microgravimetric analyses. Anal. Chem. 1997; 69(17)3506–3512, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Besnard V., Federighi M., Declerq E., Jugiau F., Cappelier J. M. Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet Res. 2002; 33(4)359–370, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Betz J. W., Aretz W., Hartel W. Use of flow cytometry in industrial microbiology for strain improvement programs. Cytometry. 1984; 5(2)145–150, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Beyeler W., Einsele A., Fiechter A. On-line measurements of culture fluorescence: method and application. Eur. J. Appl. Microbiol. Biotechnol. 1981; 13: 10–14, [CSA]
  • Billard P., DuBow M. S. Bioluminescence-based assays for detection and characterization of bacteria and chemicals in clinical laboratories. Clin. Biochem. 1998; 31(1)1–14, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bittner C., Wehnert G., Scheper T. In-situ microscopy for on-line determination of biomass. Biotechnol. Bioeng. 1998; 60(1)24–35, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Blackburn N., Hagstro Å., Wikner J., Cuadros-Hansson R., Bjørnsen P. K. Rapid determination of bacterial abundance, biovolume, morphology, and growth by neural network-based image analysis. App.Environm. Microbiol. 1998; 64(9)3246–3255, [CSA]
  • Bloomfield S. F., Stewart G. S. A., Dodd C. E. R., Booth I. R., Power E. G. M. The viable but non-culturable phenomenon explained?. Microbiol. 1998; 144: 1–3, [CSA]
  • Blum L. J., Gautier S. M., Coulet P. R. Design of bioluminescence-based fiber optic sensors for flow-injection analysis. J. Biotechnol. 1993; 31(3)357–368, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Boehl D., Solle D., Hitzmann B., Scheper T. Chemometric modeling with two-dimensional fluorescence data for Claviceps purpurea bioprocess characterization. J. Biotechnol. 2003; 105: 179–188, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bölter M., Bloem J., Meiners K., Möller R. Enumeration and biovolume determination of microbial cells—a methodological review and recommendations for applications in ecological research. Biol Fertil Soils. 2002; 36: 249–259, [CSA], [CROSSREF]
  • Bouvier T., Troussellier M., Anzil A., Courties C., Servais P. Using light scatter signal to estimate bacterial biovolume by flow cytometry. Cytom. 2001; 44: 188–194, [CSA], [CROSSREF]
  • Bradner J. R., Nevalainen K. M. Metabolic activity in filamentous fungi can be analysed by flow cytometry. J. Microbiol. Methods. 2003; 54(2)193–201, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Bragós R., Gámez X., Cairó J., Riu P. J., Gòdia F. Biomass monitoring using impedance spectroscopy. Ann. NY Acad. Scie. 1999; 873: 299–305, [CSA]
  • Bratbak G. Bacterial biovolume and biomass estimations. Appl. Environ. Microbiol. 1985; 49: 1488–1493, [CSA]
  • Bruggeman D. A. G. Berechnen verschiedener physikalischer Konstanten von heterogenen Substanzen. 1. Dielectrizitätkonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Phys. 1935; 24: 636–679, [CSA]
  • Bunthof C. J., Bloemen K., Breeuwer P., Rombouts F. M., Abee T. Flow cytometric assessment of viability of lactic acid bacteria. App. Environ. Microbiol. 2001; 67(5)2326–2335, [CSA], [CROSSREF]
  • Chaveerach P., ter Huurne A. A. H. M., Lipman L. J. A., van Knapen F. Survival and resuscitation of ten strains of Campylobacter jejuni and Campylobacter coli under acid conditions. App. Environ. Microbiol. 2003; 69(1)711–714, [CSA], [CROSSREF]
  • Cimander C., Bachinger T., Mandenius C. F. Integration of distributed multi-analyzer monitoring and control in bioprocessing based on a real-time expert system. J. Biotechnol. 2003; 103: 237–248, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Colquhoun K. O., Timms S., Fricker C. R. Detection of Escherichia coli in potable water using direct impedance technology. J. Appl. Bacteriol. 1995; 79(6)635–639, [PUBMED], [INFOTRIEVE], [CSA]
  • Couriol C., Amrane A., Prigent Y. A new model for the reconstruction of biomass history from carbon dioxide emission during batch cultivation of Geotrichum candidum. J. Bioscien. Bioeng. 2001; 91(6)570–575, [CSA], [CROSSREF]
  • Dang Y. N., Rao A., Kastl P. R., Blake R. C., Jr., Schurr M. J., Blake D. A. Quantifying Pseudomonas aeruginosa adhesion to contact lenses. Eye Contact Lens. 2003; 292: 65–68, [CSA], [CROSSREF]
  • Daugelavičius R., Bakiené E., Beržinskiené J., Bamford D. H. Use of lipophilic anions for estimation of biomass and cell viability. Biotechnol. Bioeng. 2001; 71(3)208–216, [CSA], [CROSSREF]
  • Davey C. L., Davey H. M., Kell D. B. On the dielectric properties of cell suspensions at high volume fractions. Bioelectrochem. Bioenerg. 1992; 28: 319–340, [CSA], [CROSSREF]
  • Davey H. M., Kell D. B. Flow cytometry and cell sorting of heterogeneous microbial populations: the importance of single-cell analyses. Microbiol. Reviews. 1996; 60: 641–696, [CSA]
  • Davey C. L., Kell D. B. The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements. I. Quantifying the effects on electrode polarisation of factors likely to occur during fermentation. Bioelectrochem. Bioenerg. 1998a; 46: 91–103, [CSA], [CROSSREF]
  • Davey C. L., Kell D. B. The influence of electrode polarisation on dielectric spectra, with special reference to capacitive biomass measurements. II. Reduction in the contribution of electrode polarization to dielectric spectra using a two-frequency method. Bioelectrochem. Bioenerg. 1998b; 46: 105–114, [CSA], [CROSSREF]
  • Davey C. L., Markx G. H., Kell D. B. Substitution and spreadsheet methods for fitting dielectric spectra of biological systems. Eur. Biophys. J. 1990; 18: 255–265, [CSA], [CROSSREF]
  • Davey C. L., Markx G. H., Kell D. B. On the dielectric method of monitoring cellular viability. Pure Appl. Chem. 1993; 65(9)1921–1926, [CSA]
  • Davey C. L., Peñaloza W., Kell D. B., Hedger J. N. Real-time monitoring of the accretion of Rhizopus oligosporus biomass during the solid-substrate tempe fermentation. World J. Microbiol. Biotechnol. 1991; 7: 248–259, [CSA], [CROSSREF]
  • de Keijzer M. H., Brandts R. W., Brans P. G. W. Evaluation of a biosensor for the measurement of lactate in whole blood. Clin. Biochem. 1999; 32(2)109–112, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Dinckaya E., Telefoncu A. Enzyme electrode based on oxalate oxidase immobilized in gelatin for specific determination of oxalate. Int. J. Biochem. Biophys. 1993; 30, [CSA]
  • Ducommun P., Kadouri A., von Stockar U., Marison I. W. On-Line determination of animal cell concentration in two industrial high-density culture processes by dielectric spectroscopy. Biotechnol. Bioeng. 2002; 77(3)316–323, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Duran G. M., Marshall D. L. Rapid determination of sanitizer concentration using impedance-based methods. J. Food Prot. 2002; 659: 1422–1427, [CSA]
  • Edmiston A. L., Russell S. M. Specificity of a conductance assay for enumeration of Escherichia coli from broiler carcass rinse samples containing genetically similar species. J. Food Prot. Feb. 2000; 63(2)264–267, [CSA]
  • Fehrenbach R., Comberbach M., Pêtre J. O. On-line biomass monitoring by capacitance measurement. J. Biotech. 1992; 23: 303–314, [CSA], [CROSSREF]
  • Felice C. J., Valentinuzzi M. E. Medium and interface components in impedance microbiology. IEEE Trans. Biomed. Eng. 1999; 4612: 1483–1487, [CSA], [CROSSREF]
  • Felice C. J., Madrid R. E., Olivera J. M., Rotger V. I., Valentinuzzi M. E. Impedance microbiology: quantification of bacterial content in milk by means of capacitance growth curves. J. Microbiol. Methods. 1999; 351: 37–42, [CSA], [CROSSREF]
  • Ferreira A. P., Vieira L. M., Cardoso J. P., Menezes J. C. Evaluation of a new annular capacitance probe for biomass monitoring in industrial pilot-scale fermentations. J. Biotechnol. 2005; 116: 403–409, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Firstenberg-Eden R., Eden G. Impedance Microbiology, A. N. Sharpe. Innovation in Microbiology Series, HertfordshireU.K. 1984
  • Foster K. R., Schwan H. P. Dielectric properties of tissues and biological materials: a Critical Review. Crit. Rev. Bioeng. 1989; 17(1)25–104, [CSA]
  • Fricke H. The electrical capacity of suspensions of red corpuscles of a dog. Phys. Rev. 1925; 26: 682–687, [CSA], [CROSSREF]
  • Ge X. M., Zhao X. Q., Bai F. W. Online monitoring and characterization of flocculating yeast cell flocs during continuous ethanol fermentation. Biotechnology and Bioengineering 2005; 90(5)523–531, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Geddes L. A., Baker L. E. Electrodes. Principles of Applied Biomedical Instrumentation Third Ed. Chap. 1, John Wiley & Sons, New York 1989; 950–952
  • Glassmoyer K. E, Russell S. M. Evaluation of a selective broth for detection of Staphylococcus aureus using impedance microbiology. J. Food Prot. 2001; 641: 44–50, [CSA]
  • Guan Y., Kemp R. B. The viable cell monitor: a dielectric spectroscope for growth and metabolic studies of animal cells on macroporous beads. New Developments and New Applications in Animal Cell Technology, W. Merten. Kluwer Academic Publishers, The Netherlands 1998
  • Guan Y., Evans P. M., Kemp R. B. Specific heat flow rate: an on-line monitor and potential control variable of specific metabolic rate in animal cell culture that combines microcalorimetry with dielectric spectroscopy. Biotechnol. Bioeng. 1998; 58(5)464–477, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Harris C. M., Kell D. B. The estimation of microbial biomass. Biosensors. 1985; 1: 17–84, [PUBMED], [INFOTRIEVE], [CSA]
  • Harris C. M., Todd R. W., Bungard S. J., Lovitt R. W., Morris J. G., Kell D. B. Dielectric permittivity of microbial suspensions at radio frequencies: a novel method for the real-time estimation of microbial biomass. Enzyme Microb. Technol. 1987; 9: 181–186, [CSA]
  • Hobson N. S., Tothill I., Turner A. P. F. Microbial detection. Review article. Biosens. Bioelectr. 1996; 11(5)455–477, [CSA], [CROSSREF]
  • Hoffmann F., Schmidt M., Rinas U. Simple technique for simultaneous on-line estimation of biomass and acetate from base consumption and conductivity measurements in high-cell density cultures of Escherichia coli. Biotechnol Bioeng. 2000; 70(3)358–361, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Honraet K, Goetghebeur E., Nelis H. J. Comparison of three assays for the quantification of Candida biomass in suspension and CDC reactor grown biofilms. J. Microbiol. Meth. 2005, In Press[CSA]
  • Horsburgh A. M., Mardlin D. P., Turner N. L., Henkler R., Strachan N., Glover L. A., Paton G. I., Killham K. On-line microbial biosensing and fingerprinting of water pollutants. Biosens. Bioelectron. 2002; 17: 495–501, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Hrdlicka P. J., Sørensen A. B., Poulsen B. R., Ruijter G. J. G., Visser J., Iversen J. J. L. Characterization of nerolidol biotransformation based on indirect on-line estimation of biomass concentration and physiological state in batch cultures of Aspergillus niger. Biotechnol. Prog. 2004; 20: 368–376, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Johansson E., Marko-Varga G., Gorton L. Study of a reagent- and mediator-less biosensor for D-amino acids based on coimmobilized D-amino acid oxidase and peroxidase in carbon paste electrodes. J. Biomater. Appl. 1993; 8(2)146–173, [PUBMED], [INFOTRIEVE], [CSA]
  • Kaeberlein T., Lewis K., Epstein S. S. Isolating “uncultivable” microorganisms in pure culture in a simulated natural environment. Science. 2002; 296: 1127–1129, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Keer J. T., Birch L. Molecular methods for the assessment of bacterial viability. J Microbiol. Meth. 2003; 53: 175–184, [CSA], [CROSSREF]
  • Kell D. B. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 1998; 73: 169–187, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kell D. B., Davey C. L. Conductimetric and impedimetric devices. Biosensors: A Practical Approach, A. E.G. Cass. IRL Press, Oxford 1990; 215–154
  • Kell D. B., Kaprelyants A. S., Weichart D. H., Harwood C. R., Barer M. R. Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie van Leeuwenhoek 1998; 73: 169–187, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kell D. B., Markx G. H., Davey C. L., Todd R. W. Real-time monitoring of cellular biomass: methods and applications. Trends Analyt. Chem. 1990; 9(6)190–194, [CSA], [CROSSREF]
  • Kell D. B., Young M. Bacterial dormancy and culturability: the role of autocrine growth factors. Curr. Opin. Microbiol. 2000; 3(3)238–243, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kemp R. B., Guan Y. H. The application of heat flux measurement to improve the growth of mammalian cells in culture. Thermochim. Acta. 2000; 349: 23–30, [CSA], [CROSSREF]
  • Kim B. C., Gu M. B. A bioluminescent sensor for high throughput toxicity classification. Biosens. Bioelectron. 2003; 18: 1015–1021, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Kim G. H., Rand A. G., Lechter S. V. Impedance characterization of a piezoelectric immunosensor part II: Salmonella typhimurium detection using magnetic enhancement. Biosens. Bioelectr. 2003; 18: 91–99, [CSA], [CROSSREF]
  • Konz E. Utilization of renewable energies, Part 4: Biomass. In: Aktuell. Information from the Lahmeyer International Group. Konz, E. Ed. Lahmeyer Int. Group. 2002; 44: 3–7, [CSA]
  • Leal Ascencio R. R., Aguilera Galicia G. Biomass estimation using artificial neural networks on field programmable analog devices. ISIE'2000 Proceeding IEEE. Cholula, Puebla, Mexico 2000; 61–66
  • Liu Y. C., Wang F. S., Lee W. C. On-line monitoring and controlling system for fermentation processes. Biochem. Eng. J. 2001; 7(1)17–25, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Locher G., Sonnleitner B., Fiechter A. On-line measurement in biotechnology: exploitation, objectives and benefits. J. Biotechnol. 1992; 25: 55–73, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Malacrino P., Zapparoli G., Torriani S., Dellaglio F. Rapid detection of viable yeasts and bacteria in wine by flow cytometry. J. Microbiol. Methods. 2001; 45(2)127–134, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Markx G. H., Davey C. L., Kell D. B., Morris P. The dielectric permittivity at radio frequencies and the Bruggeman probe: novel technique for the on-line determination of biomass concentrations in plant cell cultures. J. Biotechnol. 1991; 20: 279–290, [CSA], [CROSSREF]
  • McFeters G. A., Pyle B. H., Lisie J. T., Broadaway S. C. Rapid direct methods for enumeration of specific, active bacteria in water and biofilms. J. App. Microbio. Sympos. Supplem. 1999; 85: 193S–200S, [CSA]
  • Meireles L. A., Azevedo J. L., Cunha J. P., Malcata F. X. On-line determination of biomass in a microalga bioreactor using a novel computerized flow injection analysis system. Biotechnol. Prog. 2002; 18(6)1387–1391, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Mishima K., Mimura A., Takahara Y., Asami K., Hanai T. a. On-line monitoring of cell concentrations by dielectric measurements. J. Ferment. Bioeng. 1991; 72(4)291–295, [CSA], [CROSSREF]
  • Mishima K., Mimura A., Takahara Y. On-line monitoring of cell concentrations during yeast cultivation by dielectric measurements. J. Ferment. Bioeng. 1991b; 72(4)296–299, [CSA], [CROSSREF]
  • Moore J. E., Madden R. H. Impediometric detection of Campylobacter coli. J. Food Prot. 2002; 6510: 1660–1662, [CSA]
  • Moser I., Jobst G., Urban G. A. Biosensor arrays for simultaneous measurement of glucose, lactate, glutamate, and glutamine. Biosens. Bioelectron. 2002; 17: 297–302, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Neves A., Pereira D., Vieira L., Menezes J. Real time monitoring biomass concentration in Streptomyces clavuligerus cultivations with industrial media using a capacitance probe. J. Biotechnol. 2001; 84(1)45–52, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Noble P. A. Hypothetical model for monitoring microbial growth by using capacitance measurements—a minireview. J. Microbiol. Methods 1999; 37: 45–49, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Noble P. A., Dziuba M., Harrison D. J., Albritton W. L. Factors influencing capacitance-based monitoring of microbial growth. J. Microbiol. Methods 1999; 37: 51–64, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Oliver J. D., Bockian R. In vivo resuscitation, and virulence towards mice, of viable but nonculturable cells of Vibrio vulnificus. App. Environ. Microbiol. 1995; 61(7)2620–2623, [CSA]
  • Orlean P. Biogenesis of yeast wall and surface components. Molecular and Cellular Biology of the Yeast Saccharomyces. Cell Cycle and Cell Biology, J. Pringle, J. Broach, E. Jones. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York 1997; Vol. 3: 229–362
  • Owens J. D., Konirova L., Thomas D. S. Causes of conductance change in yeast cultures. J. Appl. Bacteriol. 1992; 721: 32–38, [CSA]
  • Owens J. D., Thomas D. S., Thompson P. S., Thimmerman J. W. Indirect conductimetry: a novel approach to the conductimetric enumeration of microbial population. Lett. Appl. Microbiol. 1989; 9: 245–249, [CSA]
  • Parésys G., Rigart C., Rousseau B., Wong A. W. M., Fan F., Barbier J. -P., Lavaud J. Quantitative and qualitative evaluation of phytoplankton communities by trichromatic chlorophyll fluorescence excitation with special focus on cyanobacteria. Water Res. 2005; 39: 911–921, [CSA], [CROSSREF]
  • Pauly H., Schwan H. P. Über die Impedanz einer Suspension von Kugelformingen Telchen mit einer Schale. Z. Naturforschung B. 1959; 14: 125–131, [CSA]
  • Postgate J. R. Viable counts and viability. Methods Microbiol. 1969; 1: 611–628, [CSA]
  • Premkumar J. R., Rosen R., Belkin S., Lev O. Sol–gel luminescence biosensors: Encapsulation of recombinant E. coli reporters in thick silicate films. Anal. Chim. Acta. 2002; 462: 11–23, [CSA], [CROSSREF]
  • Prusak-Sochaczewski E., Luong J. H., Guilbault G. G. Development of a piezoelectric immunosensor for the detection of Salmonella typhimurium. Enz. Microb. Technol. 1990; 12(3)173–177, [CSA], [CROSSREF]
  • Ramalho R., Cunha J., Teixeira P., Gibbs P. A. Improved methods for the enumeration of heterotrophic bacteria in bottled mineral waters. J. Microbiol. Methods 2001; 442: 97–103, [CSA], [CROSSREF]
  • Roda A., Guardigli M., Michelini E., Mirasoli M., Pasini P. Analytical bioluminescence and chemiluminescence. Anal. Chem. 2003; 462A–470A, [CSA]
  • Sarrafzadeh M. H., Belloy L., Esteban G., Navarro J. M., Ghommidh C. Dielectric monitoring of growth and sporulation of Bacillus thuringiensis. Biotechnol. Letters. 2005; 27: 511–517, [CSA], [CROSSREF]
  • Sawai J., Yoshikawa T. Measurement of fungi by an indirect conductimetric assay. Lett. Appl. Microbiol. 2003; 371: 40–44, [CSA], [CROSSREF]
  • Schanne O. F., Ruiz–Ceretti E. Impedance measurements on cell suspensions. Impedance Measurements in Biological Cells. John Wiley & Sons, New York 1978; 314–354
  • Scheper T., Brandes W., Maschke H., Plötz F., Müller C. Two FIA-based biosensor systems studied for bioprocess monitoring. J Biotechnol. 1993; 31(3)345–356, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Schwan H. P. Electrical properties of tissue and cell suspensions. Advances in Biological and Medical Physics, J. H. Lawrence, C. A. Tobias. Academic Press, New York 1957; Vol. 5: 147–209
  • Schügerl K. Progress in monitoring, modeling and control of bioprocesses during the last 20 years. J. Biotechnol. 2001; 85: 149–173, [CSA], [CROSSREF]
  • Shul'ga A. A., Soldatkin A. P., El'skaya A. V. Thin-film conductometric biosensors for glucose and urea determination. Biosens. Bioelectr. 1994; 9: 217–223, [CSA], [CROSSREF]
  • Siano S. A. Biomass measurement by inductive permittivity. Biotechnol. Bioeng. Jul. 1997; 55(2)289–304, [CSA], [CROSSREF]
  • Silley P., Forsythe S. Impedance microbiology: a rapid change for microbiologists. J. Appl. Bacteriol. 1996; 803: 233–243, [CSA]
  • Silverman M. P., Muñoz E. F. Microbial metabolism and dynamic changes in the electrical conductivity of soil solutions: a method for detecting extraterrestrial life. Appl. Microbiol. 1974; 286: 960–967, [CSA]
  • Solera R., Romero L. I., Sales D. Determination of the microbial population in thermophilic anaerobic reactor: comparative analysis by different counting methods. Anaerobe. Ecol. Environm. Microbiol. 2001; 7: 79–86, [CSA]
  • Sonnleitner B. Bioprocess automation and bioprocess design. J. Biotechnol. 1997; 52: 175–179, [CSA], [CROSSREF]
  • Sonnleitner B. Instrumentation of biotechnological processes. Adv. Biochem. Eng. Biotechnol. 1999; 66: 1–64, [CSA]
  • Stärk E., Hitzmann B., Schügerl K., Scheper T., Fuchs C., Köster D., Märkl H. In-Situ-Fluorescence-Probes: A useful tool for non-invasive bioprocess monitoring. Adv. Biochem. Eng. Biotechnol. 2002; 74: 21–38, [CSA]
  • Steen H. B. Flow cytometry of bacteria: glimpses from the past with a view to the future. J. Microbiol. Methods. 2000; 42(1)65–74, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Steenkiste F., Baert K., Debruyker D., Spiering V., van der Schot B., Arquint P., Born R., Shumann K. A microsensor array for biochemical sensing. Sens. Actuat. B. 1997; 44: 409–412, [CSA], [CROSSREF]
  • Steinert M., Emödy L., Amann R., Hacker J. Resuscitation of viable but nonculturable Legionella pneumophila Philadelphia JR32 by Acanthamoeba castellanii. Appl. Environ. Microbiol. 1997; 63(5)2047–2053, [PUBMED], [INFOTRIEVE], [CSA]
  • Turner C., Gregory M. E., Thornhill N. F. Closed-loop control of fed-batch cultures of recombinant Escherichia coli using on-line HPLC. Biotechnol. Bioeng. 1994; 44: 819–829, [CSA], [CROSSREF]
  • Valentinuzzi M. E., Morucci J. P., Felice C. J. Bioelectrical impedance technique in medicine. Part II: Monitoring of physiological events by impedance. Critical Reviews in Biomedical Engineering. Begell House, Inc., New York 1996; 353–466
  • van Benthem R. C., Van Den Assem D., Krooneman J. Compact optical sensor for real-time monitoring of bacterial growth for space applications. Ann. N. Y. Acad. Sci. 2002; 974: 541–55, [PUBMED], [INFOTRIEVE], [CSA]
  • Vaněk M., Hrnčiřík P., Vovsík J., Náhlík J. On-line estimation of biomass concentration using a neural network and information about metabolic state. Bioprocess and Biosystems Engineering 2004; 27(1)9–15, [CSA], [CROSSREF]
  • Vicente A., Castrillo J., Teixeira J., Ugalde U. On-line estimation of biomass through pH control analysis in aerobic yeast fermentation systems. Biotechnol. Bioeng. 1998; 58(4)445–450, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Voigt H., Schnitthelm F., Lange T., Kullick T., Ferretti R. Diamond-like carbon gate pH-ISFET. Sens. Actuat. B. 1997; 44: 441–445, [CSA], [CROSSREF]
  • Wang G., Doyle M. P. Survival of enterohemorrhagic Escherichia coli O157: H7 in water. J. Food Prot. 1998; 61(6)662–667, [PUBMED], [INFOTRIEVE], [CSA]
  • Wakamatsu H. A dielectric spectrometer for liquid using the electromagnetic induction method. Hewlett-Packard J. 1997; 1–10, July[CSA]
  • Wawerla M., Stolle A., Schalch B., Eisgruber H. Impedance microbiology: applications in food hygiene. J. Food Prot. 1999; 6212: 1488–1496, [CSA]
  • Winson M. K., Davey H. M. Flow cytometric analysis of microorganisms. Methods. 2000; 21(3)231–40, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Wolfbeiss O. S. Fiber-optic chemical sensors and bio-sensors. Anal. Chem. 2002; 74: 2663–2678, [CSA], [CROSSREF]
  • Yang Q., Atanasov P., Wilkins E. Needle-type lactate biosensor. Biosens. Bioelectr. 1999; 14: 203–210, [CSA], [CROSSREF]
  • Yardley J. E., Kell D. B., Barrett J., Davey C. L. On-line, real-time measurements of cellular biomass using dielectric spectroscopy. Biotechnol. Genet. Eng. Rev. 2000; 17: 3–35, [PUBMED], [INFOTRIEVE], [CSA]
  • Zabriskie D. W., Humphrey A. E. Estimation of fermentation biomass concentration by measuring culture fluorescence. Appl. Env. Microbiol. 1978; 35: 337–343, [CSA]
  • Zelić B., Vasić-Rački Đ, Wandrey C., Takors R. Modeling of the pyruvate production with Escherichia coli in a fed-batch bioreactor. Bioprocess Biosyst. Eng. 2004; 26: 249–258, [CSA]
  • Zhao R., Natarajan A., Srienc F. A flow injection flow cytometry system for on-line monitoring of bioreactors. Biotechnol. Bioeng. 1999; 62(5)609–617, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.