729
Views
53
CrossRef citations to date
0
Altmetric
Research Article

Perspectives in the Modeling and Optimization of PHB Production by Pure and Mixed Cultures

Pages 153-171 | Published online: 10 Oct 2008

REFERENCES

  • Ahn W. S., Park S. J., Lee S. Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of recombinant Escherichia coli with a highly concentrated whey solution. Appl. Environ. Microbiol. 2000; 66: 3624–3627, [PUBMED], [INFOTRIEVE], [CSA]
  • Ahn W. S., Park S. J., Lee S. Y. Production of poly(3-hydroxybutyrate) from whey by cell recycle fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett. 2001; 23: 235–240, [CSA], [CROSSREF]
  • Alderete J. E., Karl D. W., Park C. H. Production of poly(hydroxybutyrate) homopolymer and copolymer from ethanol and propanol in a fed-batch culture. Biotechnol. Prog. 1993; 9: 520–525, [CSA], [CROSSREF]
  • Alper R., Lundgren D. G. Properties of poly-β -hydroxybutyrate I. General considerations concerning the naturally occurring polymer. Biopolymers 1963; 1: 545–556, [CSA], [CROSSREF]
  • Anderson A. J., Dawes E. A. Occurrence, metabolism, metabolic role, and industrial uses of bacterial polyhydroxyalkanoates. Microbiol. Rev. 1990; 54: 450–472, [PUBMED], [INFOTRIEVE], [CSA]
  • Aragao G. M. F., Lindley N. D., Uribelarrea J. L., Parcilleux A. Maintaining a controlled residual growth capacity increases the production of polyhydroxyalkanoate copolymers by Alcaligenes eutrophus. Biotechnol. Lett. 1996; 18: 937–942, [CSA], [CROSSREF]
  • Asenjo J. A., Suk J. S. Kinetics and models for the bioconversion of methane into an intracellular polymer, poly-β -hydroxybutyrate (PHB). Biotechnol. Bioeng. Symp. Ser. 1985; 15: 225–234, [CSA]
  • Babel W., Ackermann J. -U., Breuer U. Physiology, regulation, and limits of the synthesis of poly(3HB). Adv. Biochem. Eng. Biotechnol. 2001; 71: 125–157, [PUBMED], [INFOTRIEVE], [CSA]
  • Ballard D. G. H., Holmes P. A., Senior P. J. Formation of polymers of β -hydroxybutyric acid in bacterial cells and a comparison of the morphology of growth with the formation of polyethylene in the solid state. Recent Advances in Mechanistic and Synthetic Aspects of Polymerization, M. Fontanille, A. Guyot. Reidel (Kluwer) Publishing Co., LancasterU.K. 1987; Vol. 215: 293–314
  • Belfares L., Perrier M., Ramsay B. A., Ramsay J. A., Jolicoeur M., Chavaric C. Multi-inhibition model for the growth of Alcaligenes, eutrophus. Can. J. Microbiol. 1995; 41: 249–256, Suppl.[CSA]
  • Bentley W. E., Mirjalili N., Anderson D. C., Davis R. H., Kompala D. S. Plasmid-encoded protein: The principal factor in the ‘metabolic burden’ associated with recombinant bacteria. Biotechnol. Bioeng. 1990; 35: 668–687, [CSA], [CROSSREF]
  • Bitar A., Underhill S. Effect of ammonium supplementation on production of poly-β -hydroxybutyric acid by Alcaligenes eutrophus in batch culture. Biotechnol. Lett. 1990; 12: 563–568, [CSA], [CROSSREF]
  • Brandtl H., Gross R. A., Lenz R. W., Fuller R. C. Pseudomonas oleovorans as a source of poly(β -hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl. Environ. Microbiol. 1988; 54: 1977–1982, [CSA]
  • Braunegg G., Lefebre G., Genser K. F. Polyhydroxyalkanoates, biopolymers from renewable resources: physiological and engineering aspects. J. Biotechnol. 1998; 65: 127–161, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Braunegg G., Lefelbre G., Renner G., Zeiser A., Haage G., Loidl-Lanthaler K. Kinetics as a tool for polyhydroxyalkanoate production optimization. Can. J. Microbiol. 1995; 41: 239–248, [CSA]
  • Byrom D. Polymer synthesis by microorganisms: Technology and economics. Trends Biotechnol. 1987; 5: 246–250, [CSA], [CROSSREF]
  • Byrom D. Production of poly-β -hydroxybutyrate:poly-β -hydroxyvalerate copolymers. FEMS Microbiol. Rev. 1992; 103: 247–250, [CSA], [CROSSREF]
  • Chen G. Q., Page W. J. Production of poly-β -hydroxybutyrate in a two-stage fermentation process. Biotechnol. Tech. 1997; 11: 347–350, [CSA], [CROSSREF]
  • Choi J., Lee S. Y. Production of poly(3-hydroxybutyrate) with high P(3HB) content by recombinant Escherichia coli harboring the Alcaligenes latus P(3HB) genes and the Escherichia coli ftsZ gene. J. Microbiol. Biotechnol. 1999; 9: 722–725, [CSA]
  • Choi J., Lee S. Y., Han K. Cloning of the Alcaligenes latus polyhydroxyalkanoate biosynthesis genes and use of these genes for enhanced production of poly(3-hydroxybutyrate) in Escherichia coli. Appl. Environ. Microbiol. 1998; 64: 4897–4903, [PUBMED], [INFOTRIEVE], [CSA]
  • Cornibert J., Marchessault R. H. Physical properties of poly-β-hydroxybutyrate. IV: Conformational analysis and crystal structure. J. Mol. Biol. 1972; 71: 735–756, [PUBMED], [INFOTRIEVE], [CSA]
  • Dawes E. A., Senior P. J. The role and regulation of energy reserve polymers in micro-organisms. Adv. Microbial Physiol. 1973; 10: 135–266, [CSA]
  • Delafield F. P., Doudoroff M., Palleroni N. J., Lusty C. J., Contopoulos R. Decomposition of poly-β -hydroxybutyrate by Pseudomonads. J. Bacteriol. 1965; 90: 1455–1466, [PUBMED], [INFOTRIEVE], [CSA]
  • Dhanasekar R., Tiruthagiri T., Sabarathinam P. L. Poly(3-hydroxybutyrate) synthesis from a mutant strain Azotobacter vinelandii utilizing glucose in a batch bioreactor. Biochem. Eng. J. 2003; 16: 1–8, [CSA], [CROSSREF]
  • Dhurjati P., Ramkrishna D., Flickinger C., Tsao G. T. A cybernetic view of microbial growth: Modeling cells as optimal strategists. Biotechnol. Bioeng. 1985; 27: 1–9, [CSA], [CROSSREF]
  • Doelle H. W. Bacterial Metabolism. Academic Press, New York 1975
  • Doi Y. Microbial Polyesters. VCH, New York 1990
  • Doi Y., Kawaguchi Y., Koyama N., Nakamura S., Hiramitsu M., Yoshida Y., Kimura H. Synthesis and degradation of polyhydroxyalkanoates in Alcaligenes eutrophus. FEMS Microbiol. Rev. 1992; 103: 103–108, [CSA], [CROSSREF]
  • Doi Y., Kunioka M., Nakamura T., Soga K. Biosynthesis of copolyesters of Alcaligenes eutrophus H16 from 13C-labeled acetate and propionate. Macromolecules 1987; 20: 2988–2991, [CSA], [CROSSREF]
  • Doi Y., Segawa A., Kawaguchi Y., Kunioka M. Cyclic nature of poly(3-hydroxyalkanoate) metabolism in Alcaligenes eutrophus. FEMS Microbiol. Lett. 1990; 67: 165–170, [CSA], [CROSSREF]
  • Doi Y., Tamaki A., Kunioka M., Soga K. Production of copolyesters of 3-hydroxybutyrate and 3-hydroxyvalerate by Alcaligenes eutrophus from butyric and pentanoic acids. Appl. Microbiol. Biotechnol. 1988; 28: 330–334, [CSA], [CROSSREF]
  • Ellar D., Lundgren D. G., Okamura K., Marchessault R. H. Morphology of poly-β -hydroxybutyrate granules. J. Mol. Biol. 1968; 35: 489–502, [PUBMED], [INFOTRIEVE], [CSA]
  • Ferraz L., Bonomi A., Piccoli R. A. M., Kapritchkoff F. M., Schmidell W., Alli R. C.P., Takano C. Y., Mattos M. N., Oliviera V., Fontolan V. Cybernetic structured modeling of the production of polyhydroxyalkanoates by Alcaligenes eutrophus. Brazil. J. Chem. Eng. 1999; 16: 201–212, [CSA]
  • Gadkar K. G., Doyle F. J., III, Crowley T. J., Varner J. D. Cybernetic model predictive control of a continuous bioreactor with cell recycle. Biotechnol. Prog. 2003; 19: 1487–1497, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Ganduri V. S. R. K., Ghosh S., Patnaik P. R. Mixing control as a device to increase PHB production in batch fermentations with co-cultures of Lactobacillus delbrueckii and Ralstonia eutropha. Process Biochem. 2005; 40(1)257–264, [CSA], [CROSSREF]
  • Gillard F., Tragardh C. Modeling the performance of industrial bioreactors with a dynamic micro-environmental approach: A critical review. Chem. Eng. Technol. 1999; 22: 187–195, [CSA], [CROSSREF]
  • Grootjen D. R. J., Meijlink H. H. M., van der Lans R. G. J. M., Luyben K. Ch.A.M. Cofermentation of glucose and xylose with immobilized Pichia stipitis and Saccharomyces cerevisiae. Enzyme Microb. Technol. 1990; 12: 860–864, [CSA], [CROSSREF]
  • Hanggi U. J. Pilot scale production of PHB with Alcaligenes latus. Novel Biodegradable Polymers, E. A. Dawes. Kluwer Academic Publishers, Dordrecht 1990; 65–70
  • Hanley Z. Z., Salbas T. T., Elborough K. M. The use of plant biotechnology for the production of biodegradable plastics. Trends Plant Sci. 2000; 5: 45–46, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Haywood G. H., Anderson A. J., Chu L., Dawes E. A. The role of NADH- and NADPH-linked acetoacetyl-CoA reductases in the poly-3-hydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol. Lett. 1988; 52: 259–264, [CSA], [CROSSREF]
  • Haywood G. W., Anderson A. J., Dawes E. A. The importance of PHB-synthase substrate specificity in poly-hydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol. Lett. 1989; 57: 1–6, [CSA], [CROSSREF]
  • Heinzle E., Lafferty R. M. A kinetic model for growth and synthesis of poly-β -hydroxybutyric acid (PHB) in Alcaligenes eutrophus H16. Eur. J. Appl. Microbiol. Biotechnol. 1980; 11: 8–16, [CSA], [CROSSREF]
  • Herrnstein R. J. On the law of effect. J. Exp. Anal. Behav. 1970; 13: 243–266, [CSA]
  • Hrabak O. Industrial production of poly-β -hydroxybutyrate. FEMS Microbiol Rev. 1992; 103: 251–256, [CSA], [CROSSREF]
  • Huijberts G. N. M., Eggink G. Production of poly(3-hydroxyalkanoates) by Pseudomonas putida KT 2442 in continuous cultures. Appl. Microbiol. Biotechnol. 1996; 46: 233–239, [CSA], [CROSSREF]
  • Leaf T. A., Srienc F. Metabolic modeling of polyhydroxybutyrate biosynthesis. Biotechnol. Bioeng. 1998; 57: 557–570, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Luong J. H. T. Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol. Bioeng. 1987; 19: 242–248, [CSA], [CROSSREF]
  • Janes B., Hollar J., Dennis D. Molecular characterization of the poly-β -hydroxybutyrate biosynthetic pathway of Alcaligenes eutrophus H16. Novel Biodegradable Microbial Polymers, F. A. Dawes. Kluwer Academic Publ., Dordrecht 1990; 175
  • Jendrossek D. Microbial degradation of polyesters. Adv. Biochem. Eng. Biotechnol. 2001; 71: 193–325, [CSA]
  • Jensen T. E., Sicko L. M. Fine structure of poly-β -hydroxybutyrate acid granules in a blue-green alga Chlorogloea fritschii. J. Bacteriol. 1971; 106: 683–686, [PUBMED], [INFOTRIEVE], [CSA]
  • Katoh T., Yuguchi D., Yoshii H., Shi H., Shimizu K. Dynamics and modeling on fermentative production of poly(β -hydroxybutyric acid) from sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcaligenes eutrophus. J. Biotechnol. 1999; 67: 113–134, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Khanna S., Srivastava A. K. Recent advances in microbial polyhydroxyalkanoates. Process Biochem. 2005; 40: 607–619, [CSA], [CROSSREF]
  • Kim B. S., Lee S. C., Lee S. Y., Chang H. N., Chang Y. K., Woo S. I. Production of poly(3-hydroxybutyric acid) by fed-batch culture of Alcaligenes eutrophus with glucose concentration control. Biotechnol. Bioeng. 1994a; 43: 892–898, [CSA], [CROSSREF]
  • Kim B. S., Lee S. C., Lee S. Y., Chang H. N., Chang Y. K., Woo S. I. Production of poly(3-hydroxybutyric-co-3-hydroxyvaleric acid) by fed-batch culture of Alcaligenes eutrophus with substrate control using on-line glucose analyser. Enzyme Microb. Technol. 1994b; 16: 556–561, [CSA], [CROSSREF]
  • Kim B. S., Lee S. Y., Chang H. N. Production of poly-β -hydroxybutyrate by fed-batch culture of recombinant Escherichia coli. Biotechnol. Lett. 1992; 14: 811–816, [CSA], [CROSSREF]
  • Kim Y. B., Lenz R. W., Fuller R. C. Preparation and characterization of poly(β -hydroxyalkanoates) obtained from Pseudomonas oleovorans grown with mixtures of 5-phenylvaleric acid and n-alkanoic acids. Macromolecules 1991; 24: 5256–5260, [CSA]
  • Kondo T., Kondo M. Efficient production of acetic acid from glucose in a mixed culture of Zymomonas mobilis and Acetobacter sp. J. Ferment. Bioeng. 1996; 81: 42–46, [CSA]
  • Koyama N., Doi Y. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from various carbon sources by batch-fed cultures of Alcaligenes eutrophus. J. Environ. Polym. Degrad. 1993; 3: 235–240, [CSA], [CROSSREF]
  • Lafferty R. M., Koratko B., Korsatco W. Microbial production of poly-β -hydroxybutyric acid. Biotechnology, H. -J. Rehn, G. Reed. VCH, Weinheim 1988; Vol. 6b: 135–176, Ch 6
  • Law J. H., Slepecky R. A. Assay of poly-β -hydroxybutyric acid. J. Bacteriol. 1961; 82: 33–36, [PUBMED], [INFOTRIEVE], [CSA]
  • Lee E. Y., Lee K. M., Chang H. N., Steinbuchel A. Comparison of Escherichia coli strains for synthesis and accumulation of poly(3-hydroxybutyric acid) and morphological changes. Biotechnol. Bioeng. 1994; 44: 1337–1347, [CSA], [CROSSREF]
  • Lee I. Y., Kim H. K., Kim G. J., Chang H. N., Park Y. H. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose and valerate in Alcaligenes eutrophus. Biotechnol. Lett. 1995; 17: 571–574, [CSA], [CROSSREF]
  • Lee J. H., Lim H. C., Hong J. Application of singular transformation to on-line optimal control of poly-β -hydroxybutyrate fermentation. J. Biotechnol. 1997; 55: 135–150, [CSA], [CROSSREF]
  • Lee S. Y. Bacterial polyhydroxyalkanoates. Biotechnol. Bioeng. 1996; 49: 1–14, [CSA], [CROSSREF]
  • Lee S. Y. E. coli moves into the plastic age. Nature Biotechnol. 1997; 15: 17–18, [CSA], [CROSSREF]
  • Lee S. Y., Chang H. N. High cell density cultivation of Escherichia coli W using sucrose as a carbon source. Biotechnol. Lett. 1993; 15: 971–974, [CSA], [CROSSREF]
  • Lee S. Y., Chang H. N. Production of poly(hydroxyalkanoic acid). Adv. Biochem. Eng. Biotechnol. 1995; 52: 27–58, [PUBMED], [INFOTRIEVE], [CSA]
  • Lee S. Y., Yim K. S., Chang H. N., Chang Y. K. Construction of plasmids, estimation of plasmid stability, and use of stable plasmids for the production of poly(3-hydroxybutyric acid) by recombinant Escherichia coli. J. Biotechnol. 1994; 32: 203–211, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Lee Y. W., Yoo Y. J. Kinetics for the growth of Alcaligenes eutrophus and the biosynthesis of poly-β -hydroxybutyrate. Kor. J. Appl. Microbiol. Biotechnol. 1991; 19: 186–192, [CSA]
  • Lemoigne M. Etudes sur l'autolyse microbienne origine de l'acide β -oxybutyrique forme par autolyse. Ann. Inst. Pasteur 1927; 41: 148–165, [CSA]
  • Leudking R., Piret E. L. A kinetic study of the lactic acid fermentation. J. Biochem. Microbiol. Technol. Eng. 1959; 1: 393–431, [CSA], [CROSSREF]
  • Liebergesell M., Hustede E., Timm A., Steinbuchel A., Fuller R. C., Lenz R. W., Schlegel H. G. Formation of poly(3-hydroxyalkanoic acids) by phototrophic and chemolithotrophic bacteria. Arch. Microbiol. 1991; 155: 415–421, [CSA]
  • Liebergesell M., Mayer F., Steinbuchel A. Analysis of poly-hydroxyalkanoic acid-biosynthesis genes of anoxygenic phototrophic bacteria reveals synthesis of a polyester exhibiting an unusual composition. Appl. Microbiol. Biotechnol. 1993; 40: 292–300, [CSA], [CROSSREF]
  • Luong J. H. T. Generalization of Monod kinetics for analysis of growth data with substrate inhibition. Biotechnol. Bioeng. 1987; 29: 242–248, [CSA], [CROSSREF]
  • Macrae R. M., Wilkinson J. F. The influence of culture conditions on poly-β -hydroxybutyrate synthesis by Bacillus megaterium. Proc. Roy. Phys. Soc. Edin. 1958; 27: 73–78, [CSA]
  • Manchak J., Page W. J. Control of polyhydroxyalkanoate synthesis in Azotobacter vinelandii strain UWD. Microbiology 1994; 140: 953–963, [CSA]
  • Marangoni C., Furiago A., Clanucia J., Aragao M. Production of poly(3-hydroxybutyrate-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochem. 2002; 38: 137–141, [CSA], [CROSSREF]
  • Miyano K., Ye K., Shimizu K. Improvement of vitamin B12 fermentation by reducing the inhibitory metabolites by cell recycle system and a mixed culture. Biochem. Eng. J. 2000; 6: 207–214, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Mizutani S., Mori H., Shimizu S., Sakaguchi S., Kobayashi T. Effect of amino acid supplement on cell yield and gene product in E. coli harboring plasmid. Biotechnol. Bioeng. 1986; 28: 204–209, [CSA], [CROSSREF]
  • Morinaga Y., Yamanaka S., Ishizaki A., Hirose Y. Growth characteristics and cell composition of Alcaligenes eutrophus in chemostat culture. Agric. Biol. Chem. 1978; 42: 439–444, [CSA]
  • Mulchandani A., Luong J. H. T., Groom C. Substrate inhibition kinetics for microbial growth and synthesis of poly-β -hydroxybutyric acid. Appl. Microbiol. Biotechnol. 1989; 30: 11–17, [CSA], [CROSSREF]
  • Nienow A. W. Hydrodynamics of stirred bioreactors, in Pohorecki, R. (ed.), Fluid Mechanics Problems in Biotechnology. Appl. Mechanics Rev. 1998; 51: 3–32, [CSA]
  • Oeding V., Schlegel H. G. β -Ketothiolase from Hydrogenomonas eutrophus H16 and its significance in the regulation of poly-β -hydroxybutyrate metabolism. Biochem. J. 1973; 134: 239–248, [PUBMED], [INFOTRIEVE], [CSA]
  • Page W. J., Cornish A. Growth of Azotobacter vinelandii UWD in fish peptone medium and simplified extraction of poly-β -hydroxybutyrate. Appl. Environ. Microbiol. 1993; 59: 4236–4244, [CSA]
  • Page W. J., Knosp O. Hyperproduction of poly-β -hydroxybutyrate during exponential growth of Azotobacter vinelandii UWD. Appl. Environ. Microbiol. 1989; 55: 1334–1339, [CSA]
  • Park J. -S., Lee Y. H. Metabolic characteristics of isocitrate dehydrogenase leaky mutant of Alcaligenes eutrophus and its utilization for poly-β -hydroxybutyrate production. J. Ferment. Bioeng. 1996; 81: 197–205, [CSA], [CROSSREF]
  • Patnaik P. R. Incomplete mixing in large bioreactors – a study of its role in the fermentative production of streptokinase. Bioproc. Eng. 1996; 14: 91–96, [CSA]
  • Patnaik P. R. Neural network applications to fermentation processes. Bioseparation and Bioprocessing, G. Subramanian. Wiley-VCH, Weinheim 1998; Vol. I, Ch.14
  • Patnaik P. R. Microbial metabolism as an evolutionary response: The cybernetic approach to modeling. Crit. Rev. Biotechnol. 2001a; 21: 155–175, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Patnaik P. R. Hybrid neural simulation of a fed-batch bioreactor for a non-ideal recombinant fermentation. Bioproc. Biosyst. Eng. 2001b; 24: 151–161, [CSA], [CROSSREF]
  • Patnaik P. R. Neural and hybrid neural modeling and control of fed-batch fermentation for streptokinase: Comparative evaluation under non-ideal conditions. Can. J. Chem. Eng. 2004; 82: 599–607, [CSA]
  • Patnaik P. R. Neural network designs for PHB production optimisation under simulated industrial conditions. Biotechnol. Lett. 2005, in press[CSA]
  • Patwardhan P. R., Srivastava A. K. Model-based fed-batch cultivation of R. eutropha for enhanced biopolymer production. Biochem. Eng. J. 2004; 20: 21–28, [CSA], [CROSSREF]
  • Peoples O. P., Sinskey A. J. Poly-β -hydroxybutyrate biosynthesis in Alcaligenes eutrophus H16. Characterization of the genes encoding β -ketothiolase and acetyl-CoA reductase. J. Biol. Chem. 1989; 264: 15293–15297, [PUBMED], [INFOTRIEVE], [CSA]
  • Piccoli R. A. M. Production optimisation of copolymers of polyhydroxyalkanoates through fermentation based on a structured mathematical model. Ph.D. Thesis, Univ. Sao Paulo, Sao PauloBrazil 2000, in Portuguese
  • Preusting H., Hazenberg W., Wiltholt B. Continuous production of poly(3-hydroxyalkanoates) by Pseudomonas oleovorans in a high cell density two-liquid phase chemostat. Enzyme Microb. Technol. 1993b; 15: 311–316, [CSA], [CROSSREF]
  • Preusting H., Kingma J., Wiltholt B. Physiology and polyester formation of Pseudomonas oleovorans in continuous two-liquid phase cultures. Enzyme Microb. Technol. 1991; 13: 770–780, [CSA], [CROSSREF]
  • Preusting H., Van Houten R., Hoefs A., Van Langenberghe E. H., Favre-Bulle O., Wiltholt B. High cell density cultivation of Pseudomonas oleovorans: Growth and production of poly(3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems. Biotechnol. Bioeng. 1993a; 41: 550–556, [CSA], [CROSSREF]
  • Raje P., Srivastava A. K. Updated mathematical model and fed batch strategies for poly-β -hydroxybutyrate (PHB) production by Alcaligenes eutrophus. Bioresource Technol. 1998; 64: 185–192, [CSA], [CROSSREF]
  • Ramkrishna D., Kompala D. S., Tsao G. T. Are microbes optimal strategists?. Biotechnol. Prog. 1987; 3: 121–126, [CSA]
  • Ramsay B. A., Lomaliza K., Chavarie C., Dube D., Bataille P., Ramsay J. A. Production of poly-(β -hydroxybutyric-co-β -hydroxyvaleric) acids. Appl. Environ. Microbiol. 1990; 56: 2093–2098, [PUBMED], [INFOTRIEVE], [CSA]
  • Riascos C. A. M., Pinto J. M. Optimal control of bioreactors: A simultaneous approach for complex systems. Chem. Eng. J. 2004; 99: 23–34, [CSA], [CROSSREF]
  • Rusendi D., Sheppard J. D. Hydrolysis of potato processing waste for the production of poly-β -hydroxybutyrate. Bioresource Technol. 1995; 54: 191–196, [CSA], [CROSSREF]
  • Schubert J., Simutis R., Dors M., Havlik I., Lubbert A. Bioprocess optimization and control: Application of hybrid modeling. J. Biotechnol. 1994; 35: 51–68, [CSA], [CROSSREF]
  • Schubert P., Steinbuchel A., Schlegel H. G. Cloning of the Alcaligenes eutrophus genes for synthesis of poly-β -hydroxybutyric acid (PHB) and synthesis of PHB in Escherichia coli. J. Bacteriol. 1988; 170: 5837–5847, [PUBMED], [INFOTRIEVE], [CSA]
  • Shahhosseini S. Simulation and optimization of PHB production in fed-batch culture of Ralstonia eutropha. Process Biochem. 2004; 39: 963–969, [CSA], [CROSSREF]
  • Shang L., Jiang M., Chang H. N. Poly(3-hydroxybutyrate) synthesis in fed-batch culture of Ralstonia eutropha with phosphate limitation under different glucose concentrations. Biotechnol. Lett. 2003; 25: 1415–1419, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Shi H., Shiraishi K., Shimizu K. Metabolic flux analysis for biosynthesis of poly-(β -hydroxybutyric acid) in Alcaligenes eutrophus from various carbon sources. J. Ferment. Bioeng. 1997; 84: 579–587, [CSA], [CROSSREF]
  • Shimizu H., Mizuguchi T., Tanaka E., Shioya S. Nisin production by a mixed culture system consisting of L. lactis and K. marxianus. Appl. Environ. Microbiol. 1999; 65: 3134–3141, [PUBMED], [INFOTRIEVE], [CSA]
  • Shimizu H., Tamura S., Shioya S., Suga K. Kinetic study of poly-D-3-hydroxybutyric acid (PHB) production and its molecular weight distribution control in a fed-batch culture of Alcaligenes eutrophus. J. Ferment. Bioeng. 1993; 76: 465–469, [CSA]
  • Siegel R. S., Ollis D. F. Kinetics of the growth of the hydrogen-oxidizing bacterium Alcaligenes eutrophus (ATCC 17707) in chemostat culture. Biotechnol. Bioeng. 1984; 26: 764–770, [CSA]
  • Slater S. C., Voige W. H., Dennis D. E. Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly-β -hydroxybutyrate biosynthetic pathway. J. Bacteriol. 1988; 170: 4431–4436, [PUBMED], [INFOTRIEVE], [CSA]
  • Song S., Hein S., Steinbuchel A. Production of poly(4-hydroxybutyric acid) by fed-batch cultures of recombinant strains of Escherichia coli. Biotechnol. Lett. 1999; 21: 193–197, [CSA], [CROSSREF]
  • Stein R. S. Polymer recycling: Opportunities and limitations. Proc. Natl. Acad. Sci. USA 1992; 89: 835–838, [PUBMED], [INFOTRIEVE], [CSA]
  • Steinbuchel A. PHB and other polyhydroxyalkalonic acids. Biotechnology, H. -J. Rehm, G. Reed. VCH, Weinheim 1996; Vol. 6: 403–464, Ch.13
  • Steinbuchel A., Schubert P. Expression of the Alcaligenes eutrophus poly-(β hydroxybutyric acid)-synthetic pathway in Pseudomonas sp. Arch. Microbiol. 1989; 153: 101–104, [CSA], [CROSSREF]
  • Stockdale H., Ribbons D. W., Dawes E. A. Occurrence of poly-β -hydroxybutyrate in the Azotobacteriaceae. J. Bacteriol. 1968; 95: 1798–1803, [PUBMED], [INFOTRIEVE], [CSA]
  • Suzuki T., Yamane T., Shimizu S. Mass production of poly-β -hydroxybutyric acid by fully automatic fed-batch culture of methylotroph. Appl. Microbiol. Biotechnol. 1986; 24: 322–329, [CSA]
  • Suzuki T., Yamane T., Shimizu S. Mass production of poly-β -hydroxybutyric acid by fed-batch culture with controlled carbon/nitrogen feeding. Appl. Microbiol. Biotechnol. 1986; 24: 370–374, [CSA], [CROSSREF]
  • Tanaka K., Ishizaki A., Kanamaru T., Kawano T. Production of poly(D-3-hydroxybutyrate) from CO2, H2 and O2 by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnol. Bioeng. 1994; 45: 268–275, [CSA], [CROSSREF]
  • Tanaka K., Katamune K., Ishizaki A. Fermentative production of poly-(β -hydroxybutyric acid) from xylose via L-lactate by a two-stage culture method employing Lactococcus lactis IO-1 and Alcaligenes eutrophus. Can. J. Microbiol. 1995; 41: 257–261, [CSA]
  • Taniguchi M. Clarification of interactions among microorganisms and development of co-culture system. Kagakukougaku Ronbunshu 1999; 25: 149–157, (Japanese)[CSA]
  • Timm A., Byrom D., Steinbuchel A. Formation of blends of various poly(3-hydroxyalkanoic acids) by a recombinant strain of Pseudomonas oleovorans. Appl. Microbiol. Biotechnol. 1990; 33: 296–301, [CSA], [CROSSREF]
  • Tohyama M., Patarinska T., Qiang Z., Shimizu K. Modeling of the mixed culture and periodic control for PHB production. Biochem. Eng. J. 2002; 10: 157–173, [CSA], [CROSSREF]
  • Tohyama M., Takagi S., Shimizu K. Effect of controlling lactate concentration and periodic change in DO concentration on fermentation characteristics of a mixed culture of Lactobacillus delbrueckii and Ralstonia eutropha for PHB production. J. Biosci. Bioeng. 2000; 89: 323–328, [CSA], [CROSSREF]
  • Tohyama M., Shimizu K. Control of a mixed culture of Lactobacillus delbrueckii and Ralstonia eutropha for the production of PHB from glucose via lactate. Biochem. Eng. J. 1999; 4: 45–53, [CSA], [CROSSREF]
  • Wang F., Lee S. Y. Poly(3-hydroxybutyrate) production with high productivity and high polymer content by a fed-batch culture of Alcaligenes eutrophus under nitrogen limitation. Appl. Environ. Microbiol. 1997a; 63: 3703–3706, [CSA]
  • Wang F., Lee S. Y. Production of poly(3-hydroxybutyrate) by fed-batch culture of filamentation-suppressed recombinant Escherichia coli. Appl. Environ. Microbiol. 1997b; 63: 4765–4769, [PUBMED], [INFOTRIEVE], [CSA]
  • Wang F., Lee S. Y. High cell density culture of metabolically engineered Escherichia coli for the production of poly(3-hydroxybutyrate) in a defined medium. Biotechnol. Bioeng. 1998; 58: 325–328, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Wilkinson J. F., Munro A. L. S. The influence of growth limiting conditions on the synthesis of possible carbon and energy storage polymers in Bacillus megaterium. Microbial Physiology and Continuous Culture, E. O. Powell, C. G. T. Evans, R. E. Strange, D. W. Tempest. H.M.S.O., London 1967; 173–185
  • Yamane T., Chen X. F., Ueda S. Polyhydroxyalkanoate synthesis from alcohols during the growth of Paracoccus denitrificans. FEMS Microbiol. Lett. 1996; 135: 207–211, [CSA], [CROSSREF]
  • Yoo S., Kim W. -K. Cybernetic model for synthesis of poly-β -hydroxybutyric acid in Alcaligenes eutrophus. Biotechnol. Bioeng. 1994; 43: 1043–1051, [CSA], [CROSSREF]
  • Yu J. Production of PHA from starchy waste water via organic acid. J. Biotechnol. 2001; 86: 105–112, [PUBMED], [INFOTRIEVE], [CSA], [CROSSREF]
  • Zhang H., Obias V., Gonyer K., Dennis D. Production of polyhydroxyalkanoates in sucrose-utilizing recombinant Escherichia coli and Klebsiella strains. Appl. Environ. Microbiol. 1994; 60: 1198–1205, [PUBMED], [INFOTRIEVE], [CSA]

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.