3,592
Views
228
CrossRef citations to date
0
Altmetric
Research Article

Processing of Apple Pomace for Bioactive Molecules

, , , &
Pages 285-296 | Published online: 16 Dec 2008

REFERENCES

  • I. H. Adil, H. I. Cetin, M. E. Yener, and A. Bayindirh. (2007). Subcritical (CO2+EtOH) extraction of polyphenols from apple and peach pomaces and determination of the antioxidant activities of the extracts. J. Supercritical Fluids 43:55–63.
  • A. M. Almosnino, and J. M. Belin. (1991). Apple pomace: an enzyme system for producing aroma compounds from polyunsaturated fatty acid. Biotechnol. Lett. 13:893–898.
  • A. M. Almosnino, M. Bensoussad, and J M. Belin. (1996). Unsaturated fatty acid bioconversion by apple pomace enzyme system. Factors influencing the production of aroma compounds. Food Chem. 55:327–332.
  • C. Ambid, and J. Fallot. (1980). Bioconversion d'acides gras et d'aldihydes par des cellules de pomme cultivkes in vitro. Bull. Sot. Chim. Fr 2:104–107.
  • D. Attri, and V. K. Joshi. (2006). Optimization of apple pomace based medium and fermentation conditions for pigment production by Chromobacter sp. J. Food Sci. Technol. 43:484–487.
  • V. S. Barwal, and M. Kalia. (1997). Comparative study of jellies prepared from apple, pomace and concentrate. J. Food Sci. Technol. 34:391–394.
  • S. Bhushan, and V. K. Joshi. (2006). Baker's yeast production under fed-batch culture from apple pomace. J. Sci. Ind. Res. 65:72–76.
  • S. Bhushan. (2002). Apple pomace utilization for the production of baker's yeast: process optimization, evaluation and performance. Ph.D. Thesis Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan (HP), India.
  • R. C. Brandt, and K. S. Martin. (1994). The food processing residual management manual. Publication No. 2500-BK-DER-1649. Harrisburg, PA: Pennsylvania Dept. of Environmental Resources.
  • F. Caili, T. Haijun, L. Quanhong, C. Tongyi, and D. Wenjcian. (2006). Ultrasound assisted extraction of xyloglucan from apple pomace. Ultrasonic Sonochem. 13:511–516.
  • M. H. Canteri-Schemin, H. C. R. Fertonani, N. Waszczynskyj, and G. Wosiacki. (2005). Extraction of pectin from apple pomace. Brazilian Arch. Biol. Technol. 48:259–266.
  • K. J. Carson, J. L. Collins, and M. P. Penfield. (1994). Unrefined, dried apple pomace as a potential food ingredient. J. Food Sci. 59:1213–1215.
  • G. Cetkovic, J. Canadanovic-Brunet, S. Djilas, S. Savatovic, A. Mandic, and B. Tumbas. (2008). Assessment of polyphenolics content and in vitro antiradical characteristics of apple pomace. Food Chem. 109:340–347.
  • H. Chen, G. L. Rubenthaler, and G. Schanus. (1988). Effect of apple fibre and cellulose on the physical properties of wheat flour. J. Food Sci. 53:304–309.
  • D. Constenla, A. G. Ponce, and J. E. Lozano. (2002). Effect of pomace drying on apple pectin. Lebensm.-Wiss.u.-Technol. 35:216–221.
  • A. Devarajan, V. K. Joshi, and K. Gupta. (2004). Evaluation of apple pomace based reconstituted feed in rats after solid state fermentation and ethanol recovery. Brz. Arch. Biol. Technol. 47:93–106.
  • F. Drawert, A. Kler, and R. G. Berger. (1986). Biotechnologische Erzeugung von Aromastoffen. I. Optimierung der Ausbeuten von (E)-ZHexenal bei Pflanzlichen Gewebehomogenaten. Lebensm.-Wiss.u.-Technol. 19:426–431.
  • T. Eberhardt, C. Y. Lee, and R. H. Liu. (2000). Antioxidant activity of fresh apples. Nature 405:903–904.
  • L. Ellegárd, I. Bosaeus, and H. Andersson. (2000). Will recommended changes in fat and fibre intake affect cholesterol absorption and sterol excretion?. Eur. J. Clin. Nutr. 54:306–313.
  • H. B. Endreß. (2000). High quality resulting from product integrated environment protection-PIUS. Fruit Process. 10:273–276.
  • G. A. Fenton, and M. J. Kennedy. (1998). Rapid dry weight determination of kiwifruit pomace and apple pomace using an infrared drying technique. New Zealand J. Crop Hort. Sci. 26:35–38.
  • F. Figuerola, M. L. Hurtado, A. M. Estevez, I. Chiffelle, and F. Asenjo. (2005). Fibre concentrates from apple pomace and citrus peel as potential fibre sources for food enrichment. Food Chem. 91:395–401.
  • L. Y. Foo, and Y. Lu. (1999). Isolation and identification of procyanidins in apple pomace. Food Chem. 64:511–518.
  • D. Fridrich, M. Kern, G. Pahlke, N. Volz, F. Will, H. Dietrich, and D. Marko. (2007). Apple polyphenols diminish the phosphorylation of the epidermal growth factor receptor in HT29 colon carcinoma cells. Mol. Nutrition Food Res. 51:594–601.
  • D. Gallaher, and B. O. Schneeman. (2001). Dietary fibre. In: Present Knowledge in Nutrition, B. Bowman, and R. M. Russell. (Eds.): ILSI, Washington, DC, p. 805.
  • H. Garna, N. Mabon, C. Robert, C. Cornet, K. Nott, H. Legros, B. Wathelet, and M. Paquot. (2007). Effect of extraction conditions on the yield and purity of apple pomace pectin precipitated but not washed by alcohol. J. Food. Sci. 72:C1–C9.
  • B. Gullón, G. Garrote, J. L. Alonso, and J. C. Parajó. (2007). Production of L-lactic acid and oligomeric compounds from apple pomace by simultaneous saccharification and fermentation: a response surface methodology assessment. J. Agric. Food Chem. 55:5580–5587.
  • A. Gutzwiller, L. Czegledi, P. Stoll, and L. Bruckner. (2007). Effects of Fusarium toxins on growth, humoral immune response and internal organs in weaner pigs, and the efficacy of apple pomace as antidote. J. Animal Physiol. Animal Nutri. 91:432–438.
  • S. Guyot, S. Serrand, J. M. L. Querre, P. Sanoner, and C. M. G. C. Renard. (2007). Enzymatic synthesis and physicochemical characterization of phloridzin oxidation products, a new water soluble yellow dye deriving from apple. Innov. Food Sci. Emerg. Technol. 8:443–450.
  • Y. D. Hang, and R. H. Walter. (1989). Treatment and utilization of apple processing waste. In: D. L. Downing. (Ed.), Processed Apple Products, AVI Van Nostrand Reinhold, New York, pp. 365–376.
  • Y. D. Hang, and E. E. Woodams. (1984). Apple pomace a potential substrate for citric acid production by Aspergillus niger. Biotechnol. Lett 6:763–766.
  • Y. D. Hang, and E. E. Woodams. (1995). β -Fructofuranosidase production by Aspergillus species from apple pomace. Lebensm.-Wiss.u.-Technol. 28:340–342.
  • Y. D. Hang. (1987). Production of fuels and chemicals from apple pomace. Food Technol. 41:115–117.
  • A. Hatanaka, T. Kajiwara, and J. Sekiya. (1986). Fatty acid hydroperoxide lyase in plant tissues: volatile aldehyde formation from linoleic and linolenic acids. In: T. Parliament, and R. Croteau. (Eds.), Biogeneration of Aromas, American Chemical Society, Washington, pp, 167–175.
  • P. S. Holst, A. Kjøniksen, H. Bu, S. A. Sande, and B. Nyström. (2006). Rheological properties of pH-induced association and gelation of pectin. Polymer Bull. 56:239–246.
  • HPMC, Himachal Pradesh Horticulture Produce Marketing and Processing Corporation. Personal Communcation, Sept., (2007).
  • J. Hwang, C. J. Kim, and C. T. Kim. (1998). Extrusion of apple pomace facilitates pectin extraction. J. Food Sci. 63:1–4.
  • D. J. A. Jenkins, C. W. C. Kendall, and T. P. P. Ransom. (1998). Dietary fibre, the evolution of the human diet and coronary heart disease. Nutri. Res. 18:633–652.
  • D. S. Johr, G. V. Krishnamurthy, and B. S. Bhatia. (1960). Utilization of apple pomace. Food Sci. 4:82–84.
  • V. K. Joshi, and D. K. Sandhu. (1994). Solid-state fermentation of apple pomace for production of ethanol and animal feed. In: Solid State Fermentation, A. Pandey. (Ed.), Willey Eastern, New Delhi, pp. 93–98.
  • V. K. Joshi, N. K. Kaushal, and N. S. Thakur. (1996). Apple pomace sauce—development and quality of fresh and stored products. J. Food Sci. Technol. 35:414–418.
  • V. C. Kalia, A. Kumar, S. R. Jain, and A. P. Joshi. (1992). Biomethanation of plant materials. Bioresource Technol. 41:209–212.
  • M. J. Kennedy. (1994). Apple pomace and kiwifruit: processing options. Australian Biotechnol. 4:43–49.
  • R. Lantto, P. Plathin, M. Niemisto, J. Buchert, and K. Autio. (2006). Effect of tranglutaminase, tyrosinase and freeze-dried apple pomace powder on gel forming and structure of pork meat. Lebensm.-Wiss.u.-Technol. 39:1117–1124.
  • J. A. Larrauri. (1999). New approaches in the preaparation of high dietary fibre powders from fruit by-products. Trends Food Sci. Technol. 10:3–8.
  • G. Laufenberg, B. Kunz, and M. Nystroem. (2003). Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implications. Bioresource Technol. 87:167–198.
  • C. Le Guernévé, P. Sanoner, J. F. Drilleau, and S. Guyot. (2004). New compounds obtained by enzymatic oxidation of phloridzin. Tetrahedron Lett. 45:6673–6677.
  • A. G. H. Lea. (1984). Farb- und Gerbstoffe in englischen Mostäpfeln. Flüssiges Obst. 8:356–361.
  • Y. Lu, and L. Y. Foo. (1997). Identification and quantification of major polyphenols in apple pomace. Food Chem. 59:187–194.
  • Y. Lu, and L. Y. Foo. (1998). Constitution of some chemical components of apple seed. Food Chem. 61:29–33.
  • Y. Lu, and L. Y. Foo. (2000). Antioxidant and radical scavenging activities of polyphenols from apple pomace. Food Chem. 68:81–85.
  • L. R. Lynd, W. H. Van Zyl, J. E. McBride, and M. Laser. (2005). Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16:577–583.
  • M. V. Marcon, L. C. Vriesmann, G. Wosiacki, and E. Beleski-Carneiro. (2005). Pectins from apple pomace. Polímeros: Ciência e Tecnologia 15:127–129.
  • F. A. Masoodi, and G. S. Chauhan. (1998). Use of apple pomace as a source of dietary fibre in wheat bread. J. Food. Process. Preserv. 22:255–263.
  • F. A. Masoodi, B. Sharma, and G. S. Chauhan. (2002). Use of apple pomace as a source of dietary fibre in cakes. Plant Foods Human Nutrn. 57:121–128.
  • C. D. May. (1990). Industrial pectins: sources, production and applications. Carbohydrate Polymers 12:79–99.
  • K. Mehrländer, F. Will, H. Dietrich, S. Sembries, and G. Dongowski. (2002). Structural characterization of oligosaccharides and polysaccharides from apple juices produced by enzymatic pomace liquefaction. J. Agric. Food. Chem. 50:1230–1236.
  • MFPI, Ministry of Food Processing Industries, GOI, (2006). Comprehensive Study on Apple Processing, Consultant: Mariental India Pvt. Ltd., New Delhi, India, p. 19.
  • A. Nawirska. (2005). Binding of heavy metals to pomace fibres. Food Chem. 90:395–400.
  • A. Nawirska, and M. Kwaœniewska. (2005). Dietary fibre fractions from fruit and vegetable processing waste. Food Chem 91:221–225.
  • J. J. Nicolas, F. C. Richard-Forget, P. M. Goupy, M. J. Amiot, and S. Y. Aubert. (1994). Enzymatic browning reactions in apple and apple products. Crit. Rev. Food Sci. Nutrition. 34:109–157.
  • N. Paillard. (1979). Biosynthese des produits volatils de la pomme: formation desalcools et des esters á partir des acides gras. Phytochem. 18:1165–71.
  • A. Pandey, C. R. Soccol, P. Nigam, V. T. Soccol, L. P. S. Vandenberghe, and R. Mohan. (2000). Biotechnological potential of agro-industrial residues. II: cassava bagasse. Bioresource Technol. 74:81–87.
  • R. Pirmohammadi, Y. Rouzbehan, K. Rezayazadi, and M. Zahedifar. (2006). Chemical composition, digestibility and in situ degradability of dried and ensiled apple pomace and maize silage. Small Ruminant Res. 66:150–155.
  • J. Raa, and J. C. Overeem. (1968). Transformation reaction of phloridzin in the presence of apple leaf enzymes. Phytochem. 7:721–731.
  • C. M. G. C. Renard, C. Lemeunier, and J. F. Thaibault. (1995). Alkaline extraction of xyloglucan from depectinized apple pomace: optimization and characterization. Carbohydrate Polymers 28:209–216.
  • C. M. G. C. Renard, Y. Rohou, C. Hubert, G. Della Valle, J. F. Thaibault, and J. P. Savina. (1996). Bleaching of apple pomace by hydrogen peroxide in alkaline conditions: optimization and characterization of products. Lebensm.-Wiss.u.-Technol. 30:398–405.
  • T. Ridgway, G. Tucker, and H. Wiseman. (1997). Novel bioconversions for the production of designer antioxidant and colourant flavonoids using polyphenol oxidases. Biotechnol. Genetic Engin. Rev. 14:165–190.
  • J. S. Roberts, T. S. Gentry, and A. W. Bates. (2004). Utilization of dried apple pomace as a press aid to improve the quality of strawberry, raspberry and blueberry juices. J. Food Sci. 69:181–190. SNQ
  • T. Robinson, B. Chandran, and P. Nigam. (2002). Removal of dyes from a synthetic textile dye effluent by biosorption on apple pomace and wheat straw. Water Res. 36:2824–2830.
  • G. Royer, E. Madieta, R. Symoneaux, and F. Jourjon. (2006). Preliminary study of the production of apple pomace and quince jelly. Lebensm.-Wiss.u.-Technol. 39:1022–1025.
  • J. Salmeron, J. E. Manson, M. J. Stampfer, G. A. Colditz, A. L. Wing, and W. C. Willet. (1997). Dietary fibre, glycemic load and risk of non-insulin dependent diabetes mellitus in women. JAMA 277:472–477.
  • F. Sánchez-Rabaneda, O. Jauregui, R. M. Lamuela-Raveentos, F. Viladomat, J. Bastida, and C. Codina. (2004). Qualitative analysis of phenolic compounds in apple pomace using liquid chromatography coupled to mass spectrometry in tandem mode. Rapid Comm. Mass Spectro. 18:553–563.
  • A. Schieber, P. Hilt, J. Conrad, U. Beifuss, and R. Carle. (2002). Elution order of quercetin glycosides from apple pomace extracts on a new HPLC stationary phase with hydrophilic endcapping. J. Sep. Sci. 25:361–364.
  • A. Schieber, P. Hilt, P. Streker, H. U. Endre, C. Rentschler, and R. Carle. (2003). A new process for the combined recovery of pectin and phenolic compounds from apple pomace. Innovative Food Sci. Emerging Technol. 4:99–107.
  • P. Schreier, and G. Lorenz. (1982). Separation, partial purification and characterization of a fatty acid hydroperoxide cleaving enzyme from apple and tomato fruits. Naturforschung 37:165–173.
  • J. Sehm, H. Lindermayer, H. H. D. Meyer, and M. W. Pfaffl. (2006). The influence of apple and red-wine pomace rich diet on mRNA expression of inflammatory and apoptotic markers in different piglet organs. Animal Sci. 82:877–887.
  • S. Sembries, G. Dongowski, G. Jacobasch, K. Mehrländer, F. Will, and H. Dietrich. (2003). Effect of dietary fibre-rich colloids from apple pomace extraction juices on intestinal fermentation products and microbiota in rats. British J. Nutrition. 90:607–615.
  • I. Seyis, and N. Aksoz. (2005). Xylanase production from Trichoderma harzianum 1073 D3 with alternative carbon and nitrogen sources. Food Technol. Biotechnol. 43:37–40.
  • R. C. Sharma. (1983). Waste utilization of apple pomace for vinegar generation and briquets and biogas production. M.Sc. Thesis. Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya (CSKPHKV), Palampur (HP), India.
  • S. A. Shojaosadati, and V. Babaeipour. (2002). Citric acid production from apple pomace in multi-layer packed bed solid-state bioreactor. Process Biochem. 37:909–914.
  • B. Singh, and M. P. Narang. (1992). Studies on the rumen degradation kinetics and utilization of apple pomace. Bioresource Technol. 39:233–240.
  • M. L. Sudha, V. Baskaran, and K. Leelavathi. (2007). Apple pomace as a source of dietary fibre and polyphenols and its effect on the rheological characteristics and cake making. Food Chem. 104:686–692.
  • J. Sun, X. Hu, G. Zhao, J. Wu, Z. Wang, F. Chen, and X Liao. (2007). Characteristics of thin-layer infrared drying of apple pomace with and without hot air pre-drying. Food Sci. Tech. Int. 13:91–97.
  • J. Takahashi, and T. Mori. (2006). Hydrogen production from reaction of apple pomace with water over commercial steam reforming Ni catalysts. J. Jpn. Petrol. Inst. 49:262–267.
  • B. R. Thakur, R. K. Singh, and A. K. Hanada. (1997). Chemistry and uses of pectin – a review. Crit. Rev. Food Sci. Nutrition. 37:47–54.
  • H. Trowell. (1974). Definitions of fibre. Lancet. 1:503–505.
  • H. Trowell. (1985). Dietary fibre, a paradigm. In: Dietary Fibre, fibre depleted foods and disease. H. C. Trowell, D. Burkitt, and K. W. Heaton. (Eds.), London, Academic Press, pp. 1–20.
  • F. Vendruscolo, P. M. Albuquerque, F. Streit, E. Esposito, and J. L. Ninow. (2008). Apple pomace: a versatile substrate for biotechnological applications. Crit. Rev. Biotechnol. 28:1–12.
  • J. Venus, and K. Richter. (2007). Development of a pilot plant facility for the conversion of renewables in biotechnological processes. Engng Life Sci 7 (4):395–402.
  • S. G. Villas-Bôas, E. Esposito, and M. Matos de Mendonca. (2003). Bioconversion of apple pomace into a nutritionally enriched substrate by Candida utilis and Pleurotus ostreatus. World J. Microbiol. Biotechnol 19:461–467.
  • B. S. Virk, and D. S. Sogi. (2004). Extraction and characterization of pectin from apple pomace (Malus pumila Cv Amri) peel waste. Inter. J. Food Props 7:1–11.
  • S. Wang, F. Chen, J. Wu, Z. Wang, X. Liao, and X. Hu. (2007). Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J. Food Engng 78:693–700.
  • D. K. Watt, D. J. Brasch, D. S. Larsen, and L. D. Melton. (1999). Isolation, characterization and NMR study of xyloglucon from enzymatically depectinised and non-depectinised apple pomace. Carbohydrate Polymers 39:165–180.
  • A. Wiacek-Zychlinska, J. Czakaj, and R. Sawicka-Zukowska. (1994). Xylanase production by fungal strains in solid-state fermentation. Bioresource Technol 49:13–16.
  • H. Z. Zheng, H. R. Lee, S. H. Lee, S. Kim, and K. Chung. (2008). Pectinase assisted extraction of polyphenols from apple pomace. J. Anal. Chem. 36:306–310.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.