1,874
Views
261
CrossRef citations to date
0
Altmetric
Research Article

Production of Biodiesel Using Immobilized Lipase—A Critical Review

, , , &
Pages 253-264 | Published online: 16 Dec 2008

REFERENCES

  • S. Al-Zuhair. (2005). Production of biodiesel by lipase-catalyzed transesterification of vegetable oils: A kinetics study. Biotechnology. Prog. 21:1442–1448.
  • S. Al-Zuhair, K. S. Jayaraman, K. Smita, and W. Chan. (2006). The effect of fatty acid concentration and water content on the production of biodiesel by lipase. Biochem. Eng. J. 30:212–217.
  • S. Al-Zuhair. (2007). Production of biodiesel: possibilities and challenges. Biofuels Bioproducts Biorefining. 1:57–66.
  • S. Al-Zuhair, Y. W. Fan, and S. J. Lim. (2007). Proposed kinetic mechanism of the production of biodiesel from palm oil using lipase. Process Bioch. 42:951–960.
  • V. M. Balcão, A. L. Paiva, and X. F. Malcata. (1996). Bioreactors with immobilized lipases: state of the art. Enzyme Microb. Technol. 18:392–416.
  • K. Bélafi-Bakó, F. Kovács, L. Gubicza, and J. Hancsók. (2002). Enzymatic biodiesel production from sunflower oil by Candida antarctica lipase in a solvent-free system. Biocatal. Biotrans. 20:437–439.
  • A. S. Bommarius, and B. R. Riebel-Bommarius. (2000). Biocatalysts: Fundamentals and Applications. P- 266. John Wiley & Sons, New York.
  • J. A. Bosley, and A. D. Peilow. (1997). Immobilization of lipase on porous polypropylene: reduction in esterification efficiency at low loading. J. Am. Oil Chem. Soc. 74:107–111.
  • W. Bonrath, R. Karge, and T. Netscher. (2002). Lipase-catalyzed transformations as key-steps in the large-scale preparation of vitamins. J. Molec. Catal. B: Enzym. 19:67–72.
  • M. Canakci, and V. J. Gerpen. (2001). Biodiesel production from oils and fats with high free fatty acids. Trans ASAE. 44:1429–1436.
  • L. Q. Cao, V. L. Langen, and R. A. Sheldon. (2003). Immobilized enzymes: carrier-bound or carrier-free?. Curr. Opin. Biotech. 14:387–394.
  • L. Cao. (2005). Immobilized enzymes: science or art?. Curr. Opin. Chem. Biol 9:217–226.
  • G. A. Cecilia, A. C. Amalia, and M. Ferreira. (2007). Relation between lipase structures and their catalytic ability to hydrolyse triglycerides and phospholipids. Enzyme Microb. Technol. 41:35–43.
  • S. Chamorro, J. M. Sanchez-Montero, A. R. Alcantara, and J. V. Sinisterra. (1998). Treatment of Candida rugosa lipase with short-chain polar organic solvents enhances its hydrolytic and synthetic activities. Biotechnol. Lett. 20:499–505.
  • J. W. Chen, and W. T. Wu. (2003). Regeneration of immobilized Candida antartica lipase for transesterification. J. Biosci. Bioeng. 95:466–469.
  • Y. Chisti. (2007). Biodiesel from microalgae. Biotech. Adv. 25:294–306.
  • I. J. Colton, S. N. Ahmed, and R. J. Kazlauskas. (1995). A 2-propanol treatment increases the enantioselectivity of Candida rugosa lipase toward esters of chiral carboxylic acids. J. Org. Chem. 60:212–217.
  • H. L. Dong, M. K. Jung, W. K. Seong, W. L. Ji, and W. K. Seung. (2006). Pretreatment of lipase with soybean oil before immobilization to prevent loss of activity. Biotech. Lett. 28:1965–1969.
  • V. Dossat, D. Combes, and A. Marty. (2002). Lipase-catalyzed transesterification of high oleic sunflower oil. Enzyme Microb. Technol. 30:90–94.
  • W. Du, Y. Xu, D. Liu, and J. Zeng. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. J. Mole. Catal. B: Enzym. 30:125–129.
  • W. Du, Y. Xu, D. Liu, and Z. Li. (2005). Study on acyl migration in immobilized lipozyme TL-catalyzed transesterification of soybean oil for biodiesel production. J. Molec. Catal. B: Enzymatic. 37:68–71.
  • A. F. Hsu, K. Jones, W. N. Marmer, and T. A. Foglia. (2001). Production of alkyl esters from tallow and grease using lipase immobilized in a phyllosilicate sol-gel. JAOCS. 78:585–588.
  • A. F. Hsu, K. Jones, W. N. Marmer, and T. A. Foglia. (2004). Continuous production of ethyl esters of grease using an immobilized lipase. JAOCS. 81:749–752. et al. (2004) in text
  • M. Iso, B. Chenb, M. Eguchi, T. Kudo, and S. Shrestha. (2001). Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. J. Molecul. Catal. B: Enzymatic. 16:53–58.
  • I. Karube, Y. Yugeta, and S. Suzuki. (1977). Electric field control of lipase membrane activity. Biotechn. Bioeng. 19:1493–1501.
  • J. F. Kennedy, E. H.M. Melo, and K. Jumel. (1990). Immobilized enzymes end cells. Chem. Eng. Porg. 86:81–89.
  • G. Knothe. (2005). The Biodiesel Hand Book. P-18. AOCS press, USA.
  • V. Kumari, S. Shah, and M. N. Gupta. (2007). Preparation of biodiesel by lipase-catalyzed transesterification of high free fatty acid containing oil from Madhuca indica. Energy & Fuels. 21:368–372.
  • J. Lu, K. Nie, F. Xie, F. Wang, and T. Tan. (2007). Enzymatic synthesis of fatty acids methyl esters from lard with immobilized Candida sp. 99–125. Process Biochem. 42:1367–1370.
  • L. Li, W. Du, D. Liu, L. Wang, and Z. Li. (2006). Lipase catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvents as the reaction medium. J. Mol. Catal. B: Enzymatic. 43:58–62.
  • M. Mittelbach. (1990). Lipase catalyzed alcoholysis of sunflower oil. JAOCS. 67:168–170.
  • K. M. Mukesh, J. R. C. Reddy, B. V. S. K. Rao, and R. B. N. Prasad. (2006). Lipase-mediated transformation of vegetable oils into biodiesel using propan-2-ol as acyl acceptor. Biotechnol. Lett. 28:637–640.
  • K. M. Mukesh, J. R. C. Reddy, B. V. S. K. Rao, and R. B.N. Prasad. (2007). Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresour. Technol. 98:1260–1264.
  • L. A. Nelson, T. A. Foglia, and W. N. Marmer. (1996). Lipase-catalyzed production of biodiesel. J. Am. Oil Chem. Soc. 73:1191–1195.
  • K. Nie, F. Xie, Wang, and T. Tan. (2006). Lipase catalyzed methanolysis to produce biodiesel: optimization of the biodiesel production. J. Mol. Catal. B: Enzymatic 43:142–147.
  • H. Noureddini, X. Gao, and R. S. Philkana. (2005). Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Bioresour. Technol. 96:769–777.
  • O. Orçaire, P. Buisson, and A. C. Pierre. (2006). Application of silica aerogel encapsulated lipases in the synthesis of biodiesel by transesterification reactions. J. Mol. Catal. B: Enzymatic. 42:106–113.
  • J. V. Oliveira, and D. Oliveira. (2001). Enzymatic alcoholysis of palm kernel oil in n-hexane and SCCO2. J. Supercritical Fluids. 19:141–148.
  • J. Pleiss, M. Fisher, and R. D. Schmid. (1998). Anatomy of lipase binding sites: the scissile fatty acid binding site. Chem. Phys. 93:67–80.
  • L. H. Posorske. (1984). Industrial-scale application of enzymes to the fats and oil industry. JAOCS. 61:1758–1760.
  • P. Ravindra. (2006). Biofuels scenario in Asian countries. Proceedings of 2006 World Congress on Industrial Biotechnology and Bioprocessing. Toronto, Canada. .
  • M. R. Reyed. (2007). Novel hybrid entrapment approach for probiotic cultures and its application during lyophilization. Int. J. Biol. Anthr. 3:2.
  • D. Royon, M. Daz, G. Ellenrieder, and S. Locatelli. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresour. Technol. 98:648–653.
  • A. Salis, M. Pinna, M. Monduzzi, and V. Solinas. (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. J. Biotechnol. 119:291–299.
  • T. Samukawa, M. Kaieda, T. Matsumoto, K. Ban, A. Kondo, Y. Shimada, H. Noda, and H. Fukuda. (2000). Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. J. Biosci. Bioeng. 90:180–183.
  • S. Shah, S. Sharma, and M. N. Gupta. (2004). Biodiesel preparation by lipase-catalyzed transesterification of Jatropha oil. Energy & Fuels. 18:154–159.
  • S. Shah, and M. N. Gupta. (2006). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochem. 42:410–414.
  • J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler. (1998). A. look back at the U. S. department of energy's aquatic species program—biodiesel from algae. Prepared for the U. S. department of energy's office of fuels development, National Renewable Energy Laboratory, Golden, Colorado.
  • Y. Shimada, Y. Watanabe, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga. (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antartica lipase. J. Am. Oil Chem. Soc. 76:789–793.
  • Y. Shimada, Y. Watanabe, A. Sugihara, and Y. Tominaga. (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction to oil processing. J. Molec. Catal. B: Enzym. 17:133–142.
  • M. M. Soumanou, and U. T. Bornscheuer. (2003). Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme Microb. Technol. 33:97–103.
  • A. Srivastava, and R. Prasad. (2000). Triglycerides-based diesel fuels. Renew Sustain Ener. Rev. 4:111–113.
  • H. H. Sung, M. N. Lan, S. N. Lee, S. M. Hwang, and Y. M. Koo. (2007). Lipase-catalyzed biodiesel production from soybean oil in ionic liquids. Enzyme Microb. Technol. 41:480–483.
  • A. Svendsen. (2000). Lipase protein engineering. Biochim. Biophys. Acta. 1543:223–238.
  • M. M. R. Talukder, S. M. Puah, J. C. Wu, C. J. Won, and Y. Chow. (2006). Lipase-catalyzed methanolysis of palm oil in presence and absence of organic solvent for production of biodiesel. Biocatal. Biotrans. 24:257–262.
  • M. M. R. Talukder, K. L. M. Beatrice, O. P. Song, S. Puah, J. C. Wu, C. J. Won, and Y. Chow. (2007). Improved method for efficient production of biodiesel production from palm oil. Energy and Fuels. 22:141–144.
  • A. Turkan, and S. Kalay. (2006). Monitoring lipase-catalyzed methanolysis of sunflower oil by reversed-phase high-performance liquid chromatography: elucidation of the mechanism of lipases. J. Chromatogr. A. 1127:34–44.
  • R. Vivek, and M. Giridhar. (2007). Synthesis of biodiesel from edible and non-edible oils in supercritical alcohols and enzymatic synthesis in supercritical carbon dioxide. Fuel. 86:2650–2659.
  • L. Wang, W. Du, D. Liu, L. Li, and N. Dai. (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. J. Molec. Catal. B: Enzym. 43:29–32.
  • Y. Watanabe, Y. Shimada, A. Sugihara, H. Noda, H. Fukuda, and Y. Tominaga. (2000). Continuous production of biodiesel fuel from vegetable oil using immobilized Candida antarctica Lipase. JAOCS. 77:355–360.
  • Y. Watanabe, Y. Shimada, A. Sugihara, and Y. Tominaga. (2001). Enzymatic conversion of waste edible oil to biodiesel fuel in a fixed-bed bioreactor. JAOCS. 78:703–707.
  • M. F. Xavier, R. R. Hector, S. G. Hugo, G. H. Charles, and H A. Clyde. (1990). Immobilized lipase reactors for modification of fats and oils-a review. JAOCS. 67:890–910.
  • Y. Xu, W. Du, D. Liu, and J. Zeng. (2003). A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnol. Lett. 25:1239–1241.
  • Y. Xu, W. Du, and D. Liu. (2004). Study on the kinetics of enzymatic interesterification of triglycerides for biodiesel production with methyl acetate as the acyl acceptor. J. Molecul. Catal. B: Enzym. 32:241–245.
  • F. Yagiz, D. Kazan, and A. N. Akin. (2007). Biodiesel production from waste oils by using lipase immobilized on hydrotalcite and zeolites. Chem. Eng. J. 134:262–267.
  • G. D. Yadav, and S. R. Jadhav. (2005). Synthesis of reusable lipases by immobilization on hexagonal mesoporous silica and encapsulation in calcium alginate: transesterification in non-aqueous medium. Microporous and Mesoporous Mat. 86:215–222.
  • G. Yang, T. Tian-Wei, N. Kai-Li, and W. Fang. (2006). Immobilization of lipase on macroporous resin and its application in synthesis of biodiesel in low aqueous media. Chin. J. Biotech 22:114–118.
  • Y. Yesiloglu. (2004). Immobilized lipase-catalyzed ethanolysis of sunflower oil. JAOCS. 81:157–160. Available at http://www.oregonlive.com

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.