4,701
Views
60
CrossRef citations to date
0
Altmetric
Review Article

Starch phosphorylase: Role in starch metabolism and biotechnological applications

, , &
Pages 214-224 | Published online: 27 Aug 2009

References

  • Albrecht T, Greve B, Pusch K, Kossmann J, Buchner P, Wobus U, Steup M. 1998. Homodimers and heterodimers of Pho1-type phosphorylase isoforms in Solanum tuberosum L. as revealed by sequence-specific antibodies. Eur J Biochem 251: 343–352.
  • Albrecht T, Koch A, Lode A, Greve B, Schneider-Mergener J, Steup M. 2001. Plastidic (Pho1-type) phosphorylase isoforms in potato (Solanum tuberosum L.) plants: expression analysis and immunochemical characterization. Planta 213: 602–613.
  • Ball S, Guan H-P, James M, Myers A, Keeling P, Mouille G, Buléon A, Colonna P, Preiss J. 1996. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell 86: 349–352.
  • Ball SG, Morell MK. 2003. From bacterial glycogen to starch: understanding the biogenesis of the plant starch granule. Annu Rev Plant Biol 54: 207–233.
  • Beck E, Ziegler P. 1989. Biosynthesis and degradation of starch in higher plants. Annu Rev Plant Physiol Plant Mol Biol 40: 95–117.
  • Blennow A, Engelsen SB, Nielsen TH, Baunsgaard L, Mikkelsen R. 2002. Starch phosphorylation: a new front line in starch research. Trends Plant Sci 7: 445–450.
  • Breton C, šnajdrová L, Jeanneau C, Koča J, Imberty A. 2006. Structures and mechanisms of glycosyltransferases. Glycobiology 16: 29R–37R.
  • Brisson N, Giroux H, Zollinger M, Camirand A, Simard C. 1989. Maturation and subcellular compartmentation of potato starch phosphorylase. Plant Cell 1: 559–566.
  • Buchbinder JL, Rath VL, Fletterick RJ. 2001. Structural relationships among regulated and unregulated phosphorylases. Annu Rev Biophys Biomol Struct 30: 191–209.
  • Buchner P, Borisjuk L, Wobus U. 1996. Glucan phosphorylases in Vicia faba L.: cloning, structural analysis and expression patterns of cytosolic and plastidic forms in relation to starch. Planta 199: 64–73.
  • Chen H-M, Chang S-C, Wu C-C, Cuo T-S, Wu J-S, Juang R-H. 2002. Regulation of the catalytic behaviour of L-form starch phosphorylase from sweet potato roots by proteolysis. Physiol Plant 114: 506–515.
  • Chia T, Thorneycroft D, Chapple A, Messerli G, Chen J, Zeeman SC, Smith SM, Smith AM. 2004. A cytosolic glucosyltransferase is required for conversion of starch to sucrose in Arabidopsis leaves at night. Plant J 37: 853–863.
  • Colleoni C, Dauvillée D, Mouille G, Morell M, Samuel M, Slomiany M-C, Liénard L, Wattebled F, d’Hulst C, Ball S. 1999. Biochemical characterization of the Chlamydomonas reinhardtii α-1,4 glucanotransferase supports a direct function in amylopectin biosynthesis. Plant Physiol 120: 1005–1014.
  • Coutinho PM, Deleury E, Davies GJ, Henrissat B. 2003. An evolving hierarchical family classification for glycosyltransferases. J Mol Biol 328: 307–317.
  • d’Hulst C, Planchot V, Chatterjee M. 2007. Method for improving plants. US Patent Application 20070209088.
  • da Mota RV, Cordenunsi BR, do Nascimento Purgatto P, Rosseto MRM, Lajolo FM. 2002. Activity and expression of banana starch phosphorylases during fruit development and ripening. Planta 216: 325–333.
  • Dauvillée D, Chochois V, Steup M, Haebel S, Eckermann N, Ritte G, Ral J-P, Colleoni C, Hicks G, Wattebled F, Deschamps P, d’Hulst C, Liénard L, Cournac L, Putaux J-L, Dupeyre D, Ball SG. 2006. Plastidial phosphorylase is required for normal starch synthesis in Chlamydomonas reinhardtii. Plant J 48: 274–285.
  • Duwenig E, Steup M, Willmitzer L, Kossmann J. 1997. Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. Plant J 12: 323–333.
  • Fettke J, Eckermann N, Poeste S, Pauly M, Steup M. 2004. The glucan substrate of the cytosolic (Pho2) phosphorylase isozyme from Pisum sativum L.: identification, linkage and subcellular localization. Plant J 39: 933–946.
  • Fettke J, Poeste S, Eckermann N, Tiessen A, Pauly M, Geigenberger P, Steup M. 2005a. Analysis of cytosolic heteroglycans from leaves of transgenic potato (Solanum tuberosum L.) plants that under- or overexpress the Pho 2 phosphorylase isozyme. Plant Cell Physiol 46: 1987–2004.
  • Fettke J, Eckermann N, Tiessen A, Geigenberger P, Steup M. 2005b. Identification, subcellular localization and biochemical characterization of water-soluble heteroglycans (SHG) in leaves of Arabidopsis thaliana L.: distinct SHG reside in the cytosol and in the apoplast. Plant J 43: 568–586.
  • Fettke J, Eckermann N, Kötting O, Ritte G, Steup M. 2007. Novel starch-related enzymes and carbohydrates. Cell Mol Biol 52: OL883–OL904.
  • Fujii K, Takata H, Yanase M, Terada Y, Ohdan K, Takaha T, Okada S, Kuriki T. 2003. Bioengineering and application of novel glucose polymers. Biocatal Biotransform 21: 167–172.
  • Fujii K, Terada Y, Yanase M, Odan K, Takata H, Takaha T, Kuriki T, Okada S. 2007. Production method and preparation method of glucans. US Patent 7,229,801.
  • Fukui T, Shimomura S, Nakano K. 1982. Potato and rabbit muscle phosphorylases: comparative studies on the structure, function and regulation of regulatory and nonregulatory enzymes. Mol Cell Biochem 42: 129–144.
  • Garg N, Kumar A. 2008. Immobilization of starch phosphorylase from cabbage leaves: production of glucose-1-phosphate. Brazil J Chem Engg 25: 1–7.
  • Garg S, Kumar A. 2007. Immobilization of starch phosphorylase from seeds of Indian millet (Pennisetum typhoides) variety KB560. African J Biotech 6: 2715–2720.
  • Green DE, Stumpf PK. 1942. Starch phosphorylase of potato. J Biol Chem 142: 355–366.
  • Griessler R, Psik B, Schwarz A, Nidetzky B. 2004. Relationships between structure, function and stability for pyridoxal 5’-phosphate-dependent starch phosphorylase from Corynebacterium callunaeas revealed by reversible cofactor dissociation studies. Eur J Biochem 271: 3319–3329.
  • Hanes CS. 1940a. The breakdown and synthesis of starch by an enzyme system from pea seeds. Proc Roy Soc London Ser B 128: 421–450.
  • Hanes CS. 1940b. The reversible formation of starch from glucose-1-phosphate catalysed by potato phosphorylase. Proc Roy Soc London Ser B 129: 174–208.
  • Hannah LC, James M. 2008. The complexities of starch biosynthesis in cereal endosperms. Curr Opin Biotechnol 19: 160–165.
  • Hejazi M, Fettke J, Haebel S, Edner C, Paris O, Frohberg C, Steup M, Ritte G. 2008. Glucan, water dikinase phosphorylates crystalline maltodextrins and thereby initiates solubilization. Plant J 55: 323–334.
  • Hennen-Bierwagen TA, Lin Q, Grimaud F, Planchot V, Keeling PL, James MG, Myers AM. 2009. Proteins from multiple metabolic pathways associate with starch biosynthetic enzymes in high molecular weight complexes: a model for regulation of carbon allocation in maize amyloplasts. Plant Physiol 149: 1541–1559.
  • Hudson JW, Golding GB, Crerar MM. 1993. Evolution of allosteric control in glycogen phosphorylase. J Mol Biol 234: 700–721.
  • Hulo N, Bairoch A, Bulliard V, Cerutti L, Cuche BA, de Castro E, Lachaize C, Langendijk-Genevaux PS, Sigrist CJ. 2008. The 20 years of PROSITE. Nucleic Acids Res 36: D245–D249.
  • Hüwell S, Haalck L, Conrath H, Spencer F. 1997. Maltose phosphorylase from Lactobacillus brevis: purification, characterization, and application in a biosensor for orthophosphate. Enzyme Microb Technol 21: 413–420.
  • Johnson LN. 1992. Glycogen phosphorylase: control by phosphorylation and allosteric effectors. FASEB J 6: 2274–2282.
  • Kawchuk LM, Armstrong JD, Lynch DR, Knowles NR. 1999. Potatoes having improved quality characteristics and methods for their production. US Patent 5,998,701.
  • Kossmann J, Frohberg C. 2004. Nucleic acid molecules encoding starch phosphorylase from maize. US Patent 6,686,514.
  • Kossmann J, Lloyd J. 2000. Understanding and influencing starch biochemistry. Crit Rev Plant Sci 19: 171–226.
  • Kötting O, Pusch K, Tiessen A, Geigenberger P, Steup M, Ritte G. 2005. Identification of a novel enzyme required for starch metabolism in Arabidopsis leaves. The phosphoglucan, water dikinase. Plant Physiol 137: 242–252.
  • Kumar A. 1989. Starch phosphorylase in plants. J Sci Industr Res 48: 568–576.
  • Kumar A, Sanwal GG. 1977. Multiple forms of starch phosphorylase from banana leaves. Phytochemistry 16: 327–328.
  • Kumar A, Sanwal GG. 1981a. Immobilization of starch phosphorylase from mature banana (Musa paradisiaca) leaves. Ind J Biochem Biophys 18: 114–119.
  • Kumar A, Sanwal GG. 1981b. Characterization of purified starch phosphorylase from mature banana (Musa paradisiaca) leaves. Ind J Biochem Biophys 18: 421–424.
  • Kumar A, Sanwal GG. 1982a. Purification and physicochemical properties of starch phosphorylase from young banana leaves. Biochemistry 21: 4152–4159.
  • Kumar A, Sanwal GG. 1982b. Starch phosphorylase from tapioca leaves: absence of pyridoxal phosphate. Arch Biochem Biophys 217: 341–350.
  • Kumar A, Sanwal GG. 1983a. Starch phosphorylase from mature banana (Musa paradisiaca) leaves: Part I—kinetics and inhibition studies at optimum pH. Ind J Biochem Biophys 20: 280–284.
  • Kumar A, Sanwal GG. 1983b. Starch phosphorylase from mature banana (Musa paradisiaca) leaves: Part II—aromatic amino acid inhibition at pH 7.0. Ind J Biochem Biophys 20: 285–289.
  • Kumar A, Sanwal GG. 1988. Kinetics of starch phosphorylase from young banana leaves. Phytochemistry 27: 983–988.
  • Li Z, Morell MK, Rahman S. 2007. Rice and products thereof having starch with an increased proportion of amylase. US Patent Application 20070300319.
  • Lloyd JR, Kossmann J, Ritte G. 2005. Leaf starch degradation comes out of the shadows. Trends Plant Sci 10: 130–137.
  • Lorberth R, Ritte G, Willmitzer L, Kossmann J. 1998. Inhibition of a starch-granule-bound protein leads to modified starch and repression of cold sweetening. Nat Biotechnol 16: 473–477.
  • Lu Y, Steichen JM, Yao J, Sharkey TD. 2006. The role of cytosolic α-glucan phosphorylase in maltose metabolism and the comparison of amylomaltase in Arabidopsis and Escherichia coli. Plant Physiol 142: 878–889.
  • Masao T, Junichi T, Yasushi M. 2005. Enzymatic synthesis of amylose and its medical application. Bio Ind 22: 58–66.
  • Morell MK, Myers AM. 2005. Towards the rational design of cereal starches. Curr Opin Plant Biol 8: 204–210.
  • Moreno S, Tandecarz JS. 1996. Analysis of primer independent phosphorylase activity in potato plants: high levels of activity in sink organs and sucrose-dependent activity in cultured stem explants. Cell Mol Biol 42: 637–643.
  • Mori H, Tanizawa K, Fukui T. 1993a. A chimeric α-glucan phosphorylase of plant type L and H isozymes. Functional role of 78-residue insertion in type L isozyme. J Biol Chem 268: 5574–5581.
  • Mori H, Tanizawa K, Fukui T. 1993b. Engineered plant phosphorylase showing extraordinarily high affinity for various α-glucan molecules. Protein Sci 2: 1621–1629.
  • Moss GP. 1976. Nomenclature of multiple forms of enzymes. Available at http://www.chem.qmul.ac.uk/iubmb/misc/isoen.html.
  • Nakano K, Fukui T. 1986. The complete amino acid sequence of potato α-glucan phosphorylase. J Biol Chem 261: 8230–8236.
  • Newgard CB, Hwang PK, Fletterick RJ. 1989. The family of glycogen phosphorylases: structure and function. Crit Rev Biochem Mol Biol 24: 69–99.
  • Nidetzky B, Griessler R, Pierfederici F-M, Psik B, Sciré A, Tanfani F. 2003. Mutagenesis of the dimer interface region of Corynebacterium callunae starch phosphorylase perturbs the phosphate-dependent conformational relay that enhances oligomeric stability of the enzyme. J Biochem 134: 599–606.
  • Nielsen TH, Wischmann B, Enevoldsen K, Møller BL. 1994. Starch phosphorylation in potato tubers proceeds concurrently with de novo biosynthesis of starch. Plant Physiol 105: 111–117.
  • Nighojkar SA, Kumar A. 1997. Starch phosphorylase: biochemical, molecular and biotechnological aspects. Genet Eng Biotechnol 17: 189–202.
  • Ohdan K, Fujii K, Yanase M, Takaha T, Kuriki T. 2006. Enzymatic synthesis of amylose. Biocatal Biotransform 24: 77–81.
  • Ohdan K, Fujii K, Yanase M, Takaha T, Kuriki T. 2007a. Phosphorylase coupling as a tool to convert cellobiose into amylase. J Biotechnol 127: 496–502.
  • Ohdan K, Takaha T, Kuriki T, Kudo K, Wada M, Sunako M, Takahara J. 2007b. Method of converting β-1,4-glucan to α-glucan. US Patent Application 20070092949.
  • Oikonomakos NG. 2002. Glycogen phosphorylase as a molecular target for type 2 diabetes therapy. Curr Protein Peptide Sci 3: 561–586.
  • Orzechowski S. 2008. Starch metabolism in leaves. Acta Biochim Polonica 55: in press.
  • Palm D, Klein HW, Schinzel R, Buehner M, Helmreich EJ. 1990. The role of pyridoxal 5’-phosphate in glycogen phosphorylase catalysis. Biochemistry 29: 1099–1107.
  • Pavgi-Upadhye S, Kumar A. 1996. Immobilization of starch phosphorylase from Bengal gram seeds: production of glucose-1-phosphate. Genet Eng Biotechnol 16: 145–151.
  • Priess J, Levi C. 1980. Starch biosynthesis and degradation. In Preiss J (ed), The Biochemistry of Plants (Vol. 3, pp. 371–423 ). New York: Academic Press.
  • Ritte G, Lloyd JR, Eckermann N, Rottmann A, Kossmann J, Steup M. 2002. The starch-related R1 protein is an α-glucan, water dikinase. Proc Natl Acad Sci USA 99: 7166–7171.
  • Ritte G, Scharf A, Eckermann N, Haebel S, Steup M. 2004. Phosphorylation of transitory starch is increased during degradation. Plant Physiol 135: 2068–2077.
  • Rogers S, Wells R, Rechsteiner M. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–368.
  • Sakata M, Kawai T, Kayane S, Ooshima H. 2007. Kinetic study of phosphorolysis of dextrin by potato phosphorylase. J Chem Eng Japan 40: 441–446.
  • Satoh H, Shibahara K, Tokunaga T, Nishi A, Tasaki M, Hwang S-K, Okita TW, Kaneko N, Fujita N, Yoshida M, Hosaka Y, Sato A, Utsumi Y, Ohdan T, Nakamura Y. 2008. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the synthesis and structure of starch in the endosperm. Plant Cell 20: 1833–1849.
  • Scheidig A, Frölich A, Schulze S, Lloyd JR, Kossmann J. 2002. Down-regulation of a chloroplast-targeted β-amylase leads to a starch-excess phenotype in leaves. Plant J 30: 581–591.
  • Schupp N, Ziegler P. 2004. The relation of starch phosphorylases to starch metabolism in wheat. Plant Cell Physiol 45: 1471–1484.
  • Shin H-J, Shin Y, Lee D-S. 2000. Formation of α-D-glucose-1-phosphate by thermophilic α-1,4-D-glucan phosphorylase. J Industrial Microbiol Biotechnol 24: 89–93.
  • Singh S, Sanwal GG. 1973. An allosteric α-glucan phosphorylase from banana fruits. Biochim Biophys Acta 309: 280–288.
  • Smith AM, Zeeman SC, Thorneycroft D, Smith SM. 2003. Starch mobilization in leaves. J Exp Bot 54: 577–583.
  • Smith AM, Zeeman SC, Smith SM. 2005. Starch degradation. Annu Rev Plant Biol 56: 73–98.
  • Smith SM, Fulton DC, Chia T, Thorneycroft D, Chapple A, Dunstan H, Hylton C, Zeeman SC, Smith AM. 2004. Diurnal changes in the transcriptome encoding enzymes of starch metabolism provide evidence for both transcriptional and posttranscriptional regulation of starch metabolism in Arabidopsis leaves. Plant Physiol 136: 2687–2699.
  • Sonnewald U, Basner A, Greve B, Steup M. 1995. A second L-type isozyme of potato glucan phosphorylase: cloning, antisense inhibition and expression analysis. Plant Mol Biol 27: 567–576.
  • Srivastava S, Nighojkar A, Kumar A. 1996. Immobilization of Cuscuta reflexa starch phosphorylase: production of glucose-1-phosphate using bioreactors. J Ferment Bioeng 81: 355–357.
  • Steup M, Robenek H, Melkonian M. 1983. In-vitro degradation of starch granules isolated from spinach chloroplasts. Planta 158: 428–436.
  • St-Pierre B, Bertrand C, Camirand A, Cappadocia M, Brisson N. 1996. The starch phosphorylase gene is subjected to different modes of regulation in starch-containing tissues of potato. Plant Mol Biol 30: 1087–1098.
  • Suganuma T, Kitazono J-I, Yoshinaga K, Fujimoto S, Nagahama T. 1991. Determination of kinetic parameters for maltotriose and higher malto-oligosaccharides in the reactions catalyzed by αD-glucan phosphorylase from potato. Carbohydr Res 217: 213–220.
  • Takaha T, Critchley J, Okada S, Smith SM. 1998a. Normal starch content and composition in tubers of antisense potato plants lacking D-enzyme (4-α-glucanotransferase). Planta 205: 445–451.
  • Takaha T, Yanase M, Okada S, Takata H, Nakamura H, Fujii K. 1998b. Process for preparing glucans having a cyclic structure. US Patent 5,827,697.
  • Takahashi E, Wada T, Konai Y. 1996. Process for producing trehalose. US Patent 5,565,341.
  • Tetlow IJ, Wait R, Lu Z, Akkasaeng R, Bowsher CG, Esposito S, Kosar-Hashemi B, Morell MK, Emes MJ. 2004a. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 16: 694–708.
  • Tetlow IJ, Morell MK, Emes MJ. 2004b. Recent developments in understanding the regulation of starch metabolism in higher plants. J Exp Bot 55: 2131–2145.
  • van der Vlist J, Reixach MP, van der Maarel M, Dijkhuizen L, Schouten AJ, Katja Loos K. 2008. Synthesis of branched polyglucans by the tandem action of potato phosphorylase and Deinococcus geothermalis glycogen branching enzyme. Macromol Rapid Commun 29: 1293–1297.
  • Venkaiah B, Kumar A. 1994. Egg shell bound starch phosphorylase packed bed reactor for the continuous production of glucose-1-phosphate. J Biotechnol 36: 11–17.
  • Venkaiah B, Kumar A. 1995. A process for the recovery and immobilization of starch phosphorylase from starch-based industrial wastewater. Biotechnol Appl Biochem 21: 77–85.
  • Venkaiah B, Kumar A. 1996. Multiple form of starch phosphorylase from Sorghum leaves. Phytochemistry 41: 713–717.
  • Venkaiah B, Srivastava S, Kumar A. 1991. Starch phosphorylase from Banana (Musa paradisiaca) leaves. Plant Physiol Biochem 18: 54–56.
  • Watson KA, Schinzel R, Palm D, Johnson, LN. 1997. The crystal structure of Escherichia coli maltodextrin phosphorylase provides an explanation for the activity without control in this basic archetype of a phosphorylase. EMBO J 16: 1–14.
  • Weinhäusel A, Griessler R, Krebs A, Zipper P, Haltrich D, Kulbe KD, Nidetzky B. 1997. α-1,4-D-glucan phosphorylase of gram-positive Corynebacterium callunae: isolation, biochemical properties and molecular shape of the enzyme from solution X-ray scattering. Biochem J 326: 773–783.
  • Wischmann B, Nielsen TH, Møller BL. 1999. In vitro biosynthesis of phosphorylated starch in intact potato amyloplasts. Plant Physiol 119: 455–462.
  • Yanase M, Takata H, Takaha T, Kuriki T, Smith SM, Okada S. 2002. Cyclization reaction catalyzed by glycogen debranching enzyme (EC 2.4.1.25/EC 3.2.1.33) and its potential for cycloamylose production. Appl Environ Microbiol 68: 4233–4239.
  • Yanase M, Takaha T, Kuriki T. 2006a. α-Glucan phosphorylase and its use in carbohydrate engineering. J Sci Food Agri 86: 1631–1635.
  • Yanase M, Takata H, Fujii K, Takaha T, Kuriki T. 2006b. Method of heat-stabilizing α-glucan phosphorylase(gp). US Patent Application 20060275875.
  • Yanase M, Takaha T, Kuriki T. 2007. Developing and engineering enzymes for manufacturing amylose. J Appl Glycosci 54: 125–131.
  • Young G-H, Chen H-M, Lin C-T, Tseng K-C, Wu J-S, Juang R-H. 2006. Site-specific phosphorylation of L-form starch phosphorylase by the protein kinase activity from sweet potato roots. Planta 223: 468–478.
  • Yu Y, Mu HH, Wasserman BP, Carman GM. 2001. Identification of the maize amyloplast stromal 112-kD protein as a plastidic starch phosphorylase. Plant Physiol 125: 351–359.
  • Yu T-S, Zeeman SC, Thorneycroft D, Fulton DC, Dunstan H, Lue WL, Hegemann B, Tung SY, Umemoto T, Chapple A, Tsai DL, Wang SM, Smith AM, Chen J, Smith SM. 2005. α-amylase is not required for breakdown of transitory starch in Arabidopsis leaves. J Biol Chem 280: 9773–9779.
  • Zeeman SC, Smith SM, Smith AM. 2004a. The breakdown of starch in leaves. New Phytol 163: 247–261.
  • Zeeman SC, Thorneycroft D, Schupp N, Chapple A, Weck M, Dunstan H, Haldimann P, Bechtold N, Smith AM, Smith SM. 2004b. Plastidial α-glucan phosphorylase is not required for starch degradation in Arabidopsis leaves but has a role in the tolerance of abiotic stress. Plant Physiol 135: 849–858.
  • Zeeman SC, Delatte T, Messerli G, Umhang M, Stettler M, Mettler T. Streb S, Reinhold H, Kötting OK. 2007. Starch breakdown: recent discoveries suggest distinct pathways and novel mechanisms. Funct Plant Biol 34: 465–473.
  • Zhang Y-HP, Mielenz J. 2007. Biohydrogen production by an artificial enzymatic pathway. US Patent Application 20070264534.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.