1,504
Views
69
CrossRef citations to date
0
Altmetric
Review Article

Bacteriocins from lactic acid bacteria and their potential in the preservation of fruit products

, &
Pages 852-864 | Received 19 Jan 2016, Accepted 05 Aug 2016, Published online: 03 Jan 2017

References

  • Cleveland J, Montville TJ, Nes IF, et al. Bacteriocins: safe, natural antimicrobials for food preservation. Int J Food Microbiol. 2001;71:1–20.
  • Cotter PD, Hill C, Ross P. Bacteriocins: developing innate immunity for food. Nat Rev Microbiol. 2005;3:777–788.
  • Snyder AB, Worobo RW. Chemical and genetic characterization of bacteriocins: antimicrobial peptides for food safety. J Sci Food Agric. 2013;94:28–44.
  • Grande MJ, Lucas R, Valdivia E, et al. Stability of enterocin AS-48 in fruit and vegetable juices. J Food Prot. 2005a;68:2085–2094.
  • Grande MJ, Lucas R, Abriouel H, et al. Control of Alicyclobacillus acidoterrestris in fruit juices by enterocin AS-48. Int J Food Microbiol. 2005b;104:289–297.
  • Carvalho AAT, Costa ED, Mantovani HC, et al. Effect of bovicin HC5 on growth and spore germination of Bacillus cereus and Bacillus thuringiensis isolated from spoiled mango pulp. J Appl Microbiol. 2007a;102:1000–1009.
  • Carvalho AAT, Mantovani HC, Vanetti MCD. Bactericidal effect of bovicin HC5 and nisin against Clostridium tyrobutyricum isolated from spoiled mango pulp. Lett Appl Microbiol. 2007b;45:68–74.
  • Olaimat AN, Holley RA. Factors influencing the microbial safety of fresh produce: a review. Food Microbiol. 2012;32:1–19.
  • Elsser-Gravesen D, Elsser-Gravesen A. Biopreservatives. Adv Biochem Eng Biotechnol. 2014;143:29–49.
  • Pei J, Yuan Y, Yue T. Control of Alicyclobacillus acidoterrestris in fruit juices by a newly discovered bacteriocin. World J Microbiol Biotechnol. 2014;30:855–863.
  • Beuchat LR. Ecological factors influencing survival and growth of human pathogens on raw fruits and vegetables. Microbes Infect. 2002;4:413–423.
  • Pinheiro NMS, Figueiredo EAT, Figueiredo RW, et al. Avaliação da qualidade microbiológica de frutos minimamente processados comercializados em supermercados de Fortaleza. Rev Brasil Fruticult. 2005;27:153–156.
  • Alegre I, Abadias M, Anguera M, et al. Factors affecting growth of foodborne pathogens on minimally processed apples. Food Microbiol. 2010;27:70–76.
  • Bevilacqua A, Campaniello D, Speranza B, et al. Control of Alicyclobacillus acidoterrestris in apple juice by citrus extracts and a mild heat-treatment. Food Control. 2012;31:553–559.
  • Hsu NS, Schlichting ML, Thompson-Schill SL. Feature diagnosticity affects representations of novel and familiar objects. J Cogn Neurosci. 2014;26:2735–2749.
  • Siroli L, Patrignani F, Serrazanetti DI, et al. Lactic acid bacteria and natural antimicrobials to improve the safety and shelf-life of minimally processed sliced apples and lamb's lettuce. Food Microbiol. 2015;47:74–84.
  • Komitopoulou E, Boziaris IS, Davies EA, et al. Alicyclobacillus acidoterrestris in fruit juices and its control by nisin. Int J Food Sci Technol. 1999;34:81–85.
  • Carvalho AAT, Vanetti MCD, Mantovani HC. Bovicin HC5 reduces thermal resistance of Alicyclobacillus acidoterrestris in acidic mango pulp. J Appl Microbiol. 2008;104:1685–1691.
  • Anacarso I, de Niederhaeusern S, Iseppi R, et al. Anti-listerial activity of chitosan and enterocin 416K1 in artificially contaminated RTE products. Food Control. 2011;22:2076–2080.
  • Narsaiah K, Wilson RA, Gokul K, et al. Effect of bacteriocin-incorporated alginate coating on shelf-life of minimally processed papaya (Carica papaya L.). Postharvest Biol Technol. 2015;100:212–218.
  • Allende A, Artés F, Barberan T, et al. Minimal processing for healthy traditional foods. Trends Food Sci Technol. 2006;17:513–519.
  • Abadias M, Usall J, Anguera M, et al. Microbiological quality of fresh, minimally-processed fruit and vegetables, and sprouts from retail establishments. Int J Food Microbiol. 2008;123:121–129.
  • Pinela J, Ferreira IC. Non-thermal physical technologies to decontaminate and extend the shelf-life of fruits and vegetables: trends aiming at quality and safety. Crit Rev Food Sci Nutr. 2015. [Epub ahead of print]. DOI:10.1080/10408398.2015.1046547.
  • Artés F, Allende A. Minimal fresh processing of vegetables, fruits and juices. Emerging technologies for food processing 2005;26:677–716.
  • Mukherjee A, Speh D, Dyck E, et al. Preharvest evaluation of coliforms, Escherichia coli, Salmonella, and Escherichia coli O157:H7 in organic and conventional produce grown by Minnesota farmers. J Food Prot. 2004;67:894–900.
  • Seymour IJ. Review of current industry practice on fruit and vegetable decontamination. CCFRA Review no. 14. Chipping Campden, UK: Campden & Chorley Food Research Association Group; 1999.
  • Abadias M, Alegreb I, Usalla J, et al. Evaluation of alternative sanitizers to chlorine disinfection for reducing foodborne pathogens in fresh-cut apple. Postharvest Biol Technol. 2011;59:289–297.
  • Schuenzel KM, Harrison MA. Microbial antagonists of foodborne pathogens on fresh, minimally processed vegetables. J Food Prot. 2002;65:1909–1915.
  • Gouws PA, Gie L, Pretorius A, et al. Isolation and identification of Alicyclobacillus acidocaldarius by 16S rDNA from mango juice and concentrate. Int J Food Sci Technol. 2005;40:789–792.
  • Wang Z, Cai R, Yuan Y, et al. An immunomagnetic separation-real-time PCR system for the detection of Alicyclobacillus acidoterrestris in fruit products. Int J Food Microbiol. 2014;175:30–35.
  • Amézquita-Montes Z, Tamborski M, Kopsombut UG, et al. Genetic relatedness among Escherichia coli pathotypes isolated from food products for human consumption in Cartagena, Colombia. Foodborne Pathog Dis. 2015;12:454–461.
  • Hadjilouka A, Andritsos ND, Paramithiotis S, et al. Listeria monocytogenes serotype prevalence and biodiversity in diverse food products. J Food Prot. 2014;77:2115–2220.
  • Estrada CS, Alcaráz LE, Satorres SE, et al. Presence of enterotoxigenic Staphylococcus aureus in artisan fruit salads in the city of San Luis, Argentina. Braz J Microbiol. 2014;44:1155–1161.
  • von Breymann J, Chaves C, Arias ML. Analysis of the microbiological quality and potential presence of Listeria monocytogenes in custard apple (Annona muricata), mango (Mangifera indica) and passion fruit (Passiflora edulis) pulps from Costa Rica. Arch Latinoam Nutr. 2013;63:53–57.
  • Sospedra I, Rubert J, Soriano JM, et al. Incidence of microorganisms from fresh orange juice processed by squeezing machines. Food Control. 2012;23:282–285.
  • Vantarakis A, Affifi M, Kokkinos P, et al. Occurrence of microorganisms of public health and spoilage significance in fruit juices sold in retail markets in Greece. Anaerobe. 2011;17:288–291.
  • Food and Drug Administration (FDA) [Internet]. Fresh strawberries from Washington County farm implicated in E. coli O157 outbreak in NW Oregon. 2011 [cited 2013 Aug 1]. Available from: http://www.fda.gov/safety/recalls/ucm267667.htm
  • Durak MZ, Churey JJ, Danyluk MD, et al. Identification and haplotype distribution of Alicyclobacillus spp. from different juices and beverages. Int J Food Microbiol. 2010;142:286–291.
  • Witthuhn RC, Engelbrecht S, Joubert E, et al. Microbial content of commercial South African high-moisture dried fruits. J Appl Microbiol. 2005;98:722–726.
  • Little CL, Mitchell RT. Microbiological quality of pre-cut fruit, sprouted seeds, and un pasteurised fruit and vegetable juices from retail and production premises in the UK, and the application of HAACP. Food Standards Agency; Local Authorities Coordinators of Regulatory Services; Health Protection Agency. Commun Dis Public Health 2004;7:184–190.
  • Johannessen GS, Loncarevic S, Kruse H. Bacteriological analysis of fresh produce in Norway. Int J Food Microbiol. 2002;77:199–204.
  • Centers for Disease Control and Prevention (CDC). [Internet] Outbreaks of Salmonella serotype Muenchen infections associated with unpasteurized orange juice—United State and Canada. vol. 48, Morbidity and mortality weekly report. p. 582–585; 1999.
  • Gunes GG, Hotchkiss JH. Growth and survival of Escherichia coli O157:H7 on fresh-cut apples in modified atmospheres at abusive temperatures. J Food Protect. 2002;65:1641–1645.
  • Abadias M, Usall J, Alegre I, et al. Fate of Escherichia coli in apple and reduction of its growth using the postharvest biocontrol agent Candidasake CPA-1. J Sci Food Agric. 2009;89:1526–1533.
  • Powell D, Luedtke A. Fact sheet: a timeline of fresh juice outbreaks [Internet]. 2000 [cited 2013 Feb 2]. http://www.foodsafety.ksu.edu/en/article-details.php?a=2&c=6&sc =37&id =427
  • Harris LJ, Farber JN, Beuchat LR, et al. Outbreaks associated with fresh produce: incidence, growth, and survival of pathogens in fresh and fresh-cut produce. Comp Rev Food Sci. 2003;2:78–141.
  • Centers for Disease Control and Prevention (CDC) [Internet]. Outbreak surveillance data. 2007 [2014 Jul 20]. http://www.cdc.gov/outbreaknet/surveillance data.html
  • Barbosa AAT, de Araújo HGS, Matos PN, et al. Effects of nisin-incorporated films on the microbiological and physicochemical quality of minimally processed mangoes. Int J Food Microbiol. 2013;164:135–140.
  • Settanni L, Corsetti A. Application of bacteriocins in vegetable food biopreservation. Int J Food Microbiol. 2008;121:123–138.
  • Oliveira Junior AA, Silva de Araújo Couto HG, Barbosa AA, et al. Stability, antimicrobial activity, and effect of nisin on the physico-chemical properties of fruitjuices. Int J Food Microbiol. 2015;211:38–43.
  • Quintavalla S, Vicini L. Antimicrobial food packaging in meat industry. Meat Sci. 2002;62:373–380.
  • Mauriello G, Ercolini D, La Storia A, et al. Development of polythene films for food packaging activated with an antilisterial bacteriocin from Lactobacillus curvatus 32Y. J Appl Microbiol. 2004;97:314–322.
  • Liao XY, Guo LQ, Ye ZW, et al. Use of autochthonous lactic acid bacteria starters to ferment mango juices for promoting its probiotic roles. Prep Biochem Biotechnol. 2016;46:399–405.
  • Leverntz B, Conway WS, Camp MJ, et al. Biocontrol of Listeria monocytogenes on fresh-cut produce by treatment with lytic bacteriophages and a bacteriocin. Appl Environ Microbiol. 2003;69:4519–4526.
  • Oliveira LM, Oliveira PAPLV. Principais agentes antimicrobianos utilizados em embalagens plásticas. Braz J Food Technol. 2004;7:161–165.
  • Santiago-Silva P, Soares NFF, Nóbrega JE, et al. Antimicrobial efficiency of film incorporated with pediocin (ALTA®2351) on preservation of sliced ham. Food Control. 2009;20:85–89.
  • Hamzaha HM, Osmana A, Tanb CP, et al. Carrageenan as an alternative coating for papaya (Carica papaya L. cv. Eksotika). Postharvest Biol Technol. 2013;75:142–146.
  • Pei J, Yuan Y, Yue T. Characterization of bacteriocin bificin C6165: a novel bacteriocin. J Appl Microbiol. 2013;114:1273–1284.
  • Lucas R, Grande MJ, Abriouel H, et al. Application of the broad-spectrum bacteriocin enterocin AS-48 to inhibit Bacillus coagulans in canned fruit and vegetable foods. Food Chem Toxicol. 2006;44:1774–1781.
  • Grande MJ, Lucas R, Abriouel H, et al. Inhibition of Bacillus licheniformis LMG 19409 from ropy cider by enterocin AS-48. J Appl Microbiol. 2006;101:422–428.
  • Molinos AC, Abriouel H, Ben Omar N, et al. Inactivation of Listeria monocytogenes in raw fruits by enterocin AS-48. J Food Prot. 2008;71:2460–2467.
  • Simonová M, Lauková A. Bacteriocin activity of enterococci from rabbits. Vet Res Commun. 2007;31:143–152.
  • Abrams D, Barbosa J, Albano H, et al. Characterization of bacPPK34 a bacteriocin produced by Pediococcus pentosaceus strain K34 isolated from “Alheira”. Food Control. 2011;22:40–946.
  • Chakchouk-Mtibaa A, Elleuch L, Smaoui S, et al. Characterization of the bacteriocin BacJ1 and its effectiveness for the inactivation of Salmonella typhimurium during turkey escalope storage. Food Chem. 2014;152:566–572.
  • Lee NK, Han EJ, Han KJ, et al. Antimicrobial effect of bacteriocin KU24 produced by Lactococcus lactis KU24 against methicillin-resistant Staphylococcus aureus. J Food Sci. 2013;78:465–469.
  • Todorov SD, Prévost H, Lebois M, Dousset X, Leblanc JG, Franco BD. Bacteriocinogenic Lactobacillus plantarum ST16Pa isolated from papaya (Carica papaya) — From isolation to application: characterization of a bacteriocin. Food Res Int. 2011;44:1351–1363.
  • Todorov SD, Wachsman M, Tomé E, et al. Characterisation of an antiviral pediocin-like bacteriocin produced by Enterococcus faecium. Food Microbiol. 2010;27:869–879.
  • Xiao H, Chen X, Chen M, et al. Bovicin HJ50, a novel lantibiotic produced by Streptococcus bovis HJ50. Microbiology (Reading, Engl.). 2004;150:103–108.
  • Batdorj B, Dalgalarrondo M, Choiset Y, et al. Purification and characterization of two bacteriocins produced by lactic acid bacteria isolated from Mongolian airag. J Appl Microbiol. 2006;101:837–848.
  • Pandey N, Malik RK, Kaushik JK, et al. Gassericin A: a circular bacteriocin produced by Lactic acid bacteria Lactobacillus gasseri. World J Microbiol Biotechnol. 2013;29:1977–1987.
  • Lasta S, Ouzari H, Andreotti N, et al. Lacticin LC14, a new bacteriocin produced by Lactococcus lactis BMG6.14: isolation, purification and partial characterization. Infect Disord Drug Targets. 2012;12:316–325.
  • Vignolo GM, Suriani F, Pesce de Ruiz Holgado A, et al. Antibacterial activity of Lactobacillus strains isolated from dry fermented sausages. J Appl Bacteriol. 1993;75:344–349.
  • Blanco MM, Botana A, Eisenberg P, et al. Development of an active wheat gluten film with Lactobacillus curvatus CRL705 bacteriocins and a study of its antimicrobial performance during ageing. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014a;31:164–171.
  • Blanco MM, Molina V, Sanchez M, et al. Active polymers containing Lactobacillus curvatus CRL705 bacteriocins: effectiveness assessment in Wieners. Int J Food Microbiol. 2014b;178:7–12.
  • Okkers DJ, Dicks LM, Silvester M, et al. Characterization of pentocin TV35b, a bacteriocin-like peptide isolated from Lactobacillus pentosus with a fungistatic effect on Candida albicans. J Appl Microbiol. 1999;7:726–34.
  • Hata T, Tanaka R, Ohmomo S. Isolation and characterization of plantaricin ASM1: a new bacteriocin produced by Lactobacillus plantarum A-1. Int J Food Microbiol. 2010;137:94–99.
  • Barbour A, Philip K. Variable characteristics of bacteriocin-producing Streptococcus salivarius strains isolated from Malaysian subjects. PLoS One. 2014;9:e100541.
  • Jiang J, Shi B, Zhu D, et al. Characterization of a novel bacteriocin produced by Lactobacillus sakei LSJ618 isolated from traditional Chinese fermented radish. Food Control. 2012;23:338–344.
  • Vaillancourt K, LeBel G, Frenette M, et al. Suicin 3908, a new lantibiotic produced by a strain of Streptococcus suis serotype 2 isolated from a healthy carrier pig. PLoS One. 2015;10:e0117245.
  • Kabuki T, Uenishi H, Watanabe M, et al. Characterization of a bacteriocin, thermophilin 1277, produced by Streptococcus thermophilus SBT1277. J Appl Microbiol. 2007;102:971–980.
  • Delves-Broughton J, Blackburn P, Evans RJ, et al. Applications of the bacteriocin, nisin. Antonie Van Leeuwenhoek. 1996;69:193–202.
  • McAuliffe O, Roos RP, Hill C. Lantibiotics: structure, biosynthesis and mode of action. FEMS Microbiol Rev. 2001;25:285–308.
  • Yamazaki K, Murakami M, Kawai Y, et al. Use of nisin for inhibition of Alicyclobacillus acidoterrestris in acidic drinks. Int J Food Microbiol. 2000;17:315–320.
  • Walker M, Phillips CA. The effect of preservatives on Alicyclobacillus acidoterrestris and Propionibacterium cyclohexanicum in fruit juice. Food Control. 2008;19:974–981.
  • Pathanibul P, Taylor TM, Davidson PM, et al. Inactivation of Escherichia coli and Listeria innocua in apple and carrot juices using high pressure homogenization and nisin. Int J Food Microbiol. 2009;28:316–320.
  • Saldaña G, Minor-Pérez H, Raso J, et al. Combined effect of temperature, pH, and presence of nisin on inactivation of Staphylococcus aureus and Listeria monocytogenes by pulsed electric fields. Foodborne Pathog Dis. 2011;8:797–802.
  • Yu Y, Wu J, Xiao G, et al. Combined effect of dimethyl dicarbonate (DMDC) and nisin on indigenous microorganisms of litchi juice and its microbial shelf life. J Food Sci. 2011;78:1236–1241.
  • Jagannath A, Kumar M, Raju PS, et al. Nisin based stabilization of novel fruit and vegetable functional juices containing bacterial cellulose at ambient temperature. J Food Sci Technol. 2014;51:1218–1222.
  • Ukuku DO, Fett WF. Effectiveness of chlorine and nisin-EDTA treatments of whole melons and fresh-cut pieces for reducing native microflora and extending shelf-life. J Food Safety. 2002;22:231–253.
  • Ukuku DO, Fett WF. Effect of nisin in combination with EDTA, sodium lactate, and potassium sorbate for reducing Salmonella on whole and fresh-cut cantaloupet. J Food Prot. 2004;67:2143–2150.
  • Ukuku DO, Barib ML, Kawamoto S, et al. Use of hydrogen peroxide in combination with nisin, sodium lactate and citric acid for reducing transfer of bacterial pathogens from whole melon surfaces to fresh-cut pieces. Int J Food Microbiol. 2005;104:225–233.
  • Mantovani HC, HU H, Worobo RW, et al. Bovicin HC5, a bacteriocin from Streptococcus bovis HC5. Microbiology (Reading, Engl.). 2002;148:3347–3352.
  • Houlihan AJ, Mantovani HC, Russell JB. Effect of pH on the activity of bovicin HC5, a bacteriocin from Streptococcus bovis HC5. FEMS Microbiol Lett. 2004;23:27–32.
  • Carvalho AAT, Mantovani HC, Paiva AD, et al. The effect of carbon and nitrogen sources on bovicin HC5 production by Streptococcus bovis HC5. J Appl Microbiol. 2009;107:339–347.
  • Barbosa AAT, Mantovani HC, Lopes DRG, et al. Like it acid and poor: a study of abiotic factors influencing Streptococcus bovis HC5 growth and bacteriocin production. J Microbiol Biotechnol Food Sci. 2015;4:426–426.
  • Paiva AD, Fernandes KM, Dias RS, et al. Safety evaluation of the antimicrobial peptide bovicin HC5 orally administered to a murine model. BMC Microbiol. 2013;27:13–69.
  • Paiva AD, de Oliveira MD, de Paula SO, et al. Toxicity of bovicin HC5 against mammalian cell lines and the role of cholesterol in bacteriocin activity. Microbiology. 2012;158:2851–2858.
  • Mantovani HC, Russell JB. Inhibition of Listeria monocytogenes by bovicin HC5, a bacteriocin produced by Streptococcus bovis HC5. Int J Food Microbiol. 2003;89:77–83.
  • Cobos ES, Filimonov VV, Gálvez A, et al. AS-48: a circular protein with an extremely stable globular structure. FEBS Lett. 2001;505:379–382.
  • Khan H, Flint S, Yu PL. Enterocins in food preservation. Int J Food Microbiol. 2010;141:1–10.
  • Burgos MJ, Aguayo MC, Pulido RP, et al. Inactivation of Staphylococcus aureus in oat and soya drinks by enterocin AS-48 in combination with other antimicrobials. J Food Sci. 2014;80:2030–2034.
  • Grande BMJ, Pulido RP, Del Carmen LAM, et al. The cyclic antibacterial peptide enterocin AS-48: isolation, mode of action, and possible food applications. Int J Mol Sci. 2014;15:22706–22727.
  • Muñoz A, Maqueda M, Gálvez A, et al. Biocontrol of psychrotrophic enterotoxigenic Bacillus cereus in a non fat hard type cheese by an enterococcal strain-producing enterocin AS-48. J Food Prot. 2004;67:1517–1521.
  • Ananou S, Garriga M, Hugas M, et al. Control of Listeria monocytogenes in model sausages by enterocin AS-48. Int J Food Microbiol. 2005;103:179–190.
  • Martínez-Viedma P, López AS, Ben Omar N, et al. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. Int J Food Microbiol. 2008a;128:244–249.
  • Martínez-Viedma P, Abriouel H, Ben Omar N, et al. Inactivation of exopolysaccharide and 3-hydroxypropionaldehyde-producing lactic acid bacteria in apple juice and apple cider by enterocin AS-48. Food Chem Toxicol. 2008b;46:1143–1151.
  • Gonzáles C, Langdon GM, Bruix M, et al. Bacteriocin AS-48, a microbial cyclic polypeptide structurally and functionally related to mammalian NK-lysin. Proc Natl Acad Sci USA. 2000;97:11221–11226.
  • Martínez-Viedma P, Sobrino López A, Ben Omar N, et al. Increased inactivation of exopolysaccharide-producing Pediococcus parvulus in apple juice by combined treatment with enterocin AS-48 and high-intensity pulsed electric field. J Food Prot. 2010;73:39–43.
  • Pérez Pulido R, Toledo J, Grande MJ, et al. Analysis of the effect of high hydrostatic pressure treatment and enterocin AS-48 addition on the bacterial communities of cherimoya pulp. Int J Food Microbiol. 2015;2:62–6 9.
  • Sabia C, Manicardi G, Messi P, de Niederhäusern S, et al. Enterocin 416K1, an antilisterial bacteriocin produced by Enterococcus casseliflavus IM 416K1 isolated from Italian sausages. Int J Food Microbiol. 2002;75:163–170.
  • Sabia C, de Niederhäusern S, Messi P, et al. Bacteriocin-producing Enterococcus casseliflavus IM 416K1, a natural antagonist for control of Listeria monocytogenes in Italian sausages (“cacciatore”). Int J Food Microbiol. 2003;87:173–179.
  • Iseppi R, Pilati F, Marini M, et al. Anti-listerial activity of a polymeric film coated with hybrid coatings doped with enterocin 416K1 for use as bioactive food packaging. Int J Food Microbiol. 2008;123:281–287.
  • Narsaiah K, Jha SN, Wilson RA, et al. Pediocin loaded nanoliposomes and hybrid alginate-nanoliposome delivery systems for slow release of pediocin. Bionanoscience. 2013;3:37–42.
  • Rodríguez JM, Martínez MI, Kok J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit Rev Food Sci Nutr. 2002;42:91–121.
  • Drider D, Fimland G, Hechard Y, et al. The continuing story of class IIa bacteriocins. Microbiol Mol Biol Rev. 2006;70:564–582.
  • Díez L, Rojo-Bezares B, Zarazaga M, et al. Antimicrobial activity of pediocin PA-1 against Oenococcus oeni and other wine bacteria. Food Microbiol. 2012;31:167–172.
  • Woraprayote W, Kingcha Y, Amonphanpokin P, et al. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int J Food Microbiol. 2013;167:229–235.
  • Narayanan A, Neera M, Ramana KV. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Appl Biochem Biotechnol. 2013;170:1379–1388.
  • Millette M, Dupont C, Archambault D, et al. Partial characterization of bacteriocins produced by human Lactococcus lactis and Pediococccus acidilactici isolates. J Appl Microbiol. 2007;102:274–282.
  • Castellano P, González C, Carduza F, et al. Protective action of Lactobacillus curvatus CRL705 on vacuum-packaged raw beef. Effect on sensory and structural characteristics. Meat Sci. 2010;85:394–401.
  • Todorov SD, Leblanc JG, Franco BD. Evaluation of the probiotic potential and effect of encapsulation on survival for Lactobacillus plantarum ST16Pa isolated from papaya. World J Microbiol Biotechnol. 2012;28:973–984.
  • Trias R, Badosa E, Montesinos E, et al. Bioprotective Leuconostoc strains against Listeria monocytogenes in fresh fruits and vegetables. Int J Food Microbiol. 2008;127:91–98.
  • Di Cagno R, Cardinali G, Minervini G, et al. Taxonomic structure of the yeasts and lactic acid bacteria microbiota of pineapple (Ananas comosus L. Merr.) and use of autochthonous starters for minimally processing. Food Microbiol. 2010;27:381–389.
  • Di Cagno R, Coda R, De Angelis M, et al. Exploitation of vegetables and fruits through lactic acid fermentation. Food Microbiol. 2013;33:1–10.
  • Russo P, de Chiara ML, Vernile A, et al. Fresh-cut pineapple as a new carrier of probiotic lactic acid bacteria. Biomed Res Int. 2014;2014:309183.
  • Wong CB, Khoo BY, Sasidharan S, et al. Inhibition of Staphylococcus aureus by crude and fractionated extract from lactic acid bacteria. Benef Microbes. 2015;6:129–139.
  • Ming L, Zhang Q, Yang L, et al. Comparison of antibacterial effects between antimicrobial peptide and bacteriocins isolated from Lactobacillus plantarum on three common pathogenic bacteria. Int J Clin Exp Med. 2015;8:5806–5811.
  • Tai HF, Foo HL, Abdul Rahim R, et al. Molecular characterisation of new organisation of plnEF and plw loci of bacteriocin genes harbour concomitantly in Lactobacillus plantarum I-UL4. Microb Cell Fact. 2015;16:14–89.
  • Harima-Mizusawa N, Iino T, Onodera-Masuoka N, et al. Beneficial effects of citrus juice fermented with Lactobacillus plantarum YIT 0132 on Japanese cedar pollinosis. Biosci Microbiota Food Health. 2014;33:147–155.
  • Swain MR, Anandharaj M, Ray RC, et al. Fermented fruits and vegetables of Asia: a potential source of probiotics. Biotechnol Res Int. 2014;2014:250424.
  • Xiao Y, Su C, Ouyang Y, et al. Trends of vegetables and fruits consumption among Chinese adults aged 18 to 44 years old from 1991 to 2011. Zhonghua Liu Xing Bing Xue Za Zhi. 2011;36:232–236.
  • Delves-Broughton J. Nisin as a food preservative. Food Australia. 2005;57:525–527.
  • Benmechernene Z, Fernandez-No I, Kihal M, et al. Recent patents on bacteriocins: food and biomedical applications. Recent Pat DNA Gene Seq. 2013;7:66–73.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.