1,114
Views
34
CrossRef citations to date
0
Altmetric
Review Article

Microbial processing of fruit and vegetable wastes into potential biocommodities: a review

, , &
Pages 1-16 | Received 24 Sep 2015, Accepted 22 Dec 2016, Published online: 02 May 2017

References

  • BBC research. Biorefinary products: global markets. 2015 [cited 2015 Jun 15]. Available from: http://www.bbcresearch.com/market-research/energy-and-resources/biorefinery-products-market-egy117a.html.
  • Panda SK, Mishra SS, Kayitesi E, et al. Microbial-processing of fruit and vegetable wastes for production of vital enzymes and organic acids: biotechnology and scopes. Env Res. 2016;146:161–172.
  • Mohanty S, Ray P, Swain MR, et al. Fermentation of cashew (Anacardium occidentale L.) apple to wine. J Food Process Preserv. 2006;30:314–322.
  • Varakumar S, Kumar YS, Reddy OVS. Carotenoid composition of mango (Mangifera indica L.) wine and its antioxidant activity. J Food Biochem. 2011;35:1538–1547.
  • Panda SK, Sahu UC, Behera SK, et al. Bio-processing of bael [Aegle marmelos L.] fruits into wine with antioxidants. Food Biosci. 2014;5:34–41.
  • Panda SK, Sahu UC, Behera SK, et al. Fermentation of sapota (Achras sapota Linn.) fruits to functional wine. Nutrafoods. 2014;13:179–186.
  • Ray RC, Panda SK, Swain MR, et al. Proximate composition and sensory evaluation of anthocyanin rich purple sweet potato (Ipomoea batatas L.) wine. Int J Food Sci Technol. 2012;47:452–458.
  • Panda SK, Swain MR, Singh S, et al. Proximate compositions of a herbal purple sweet potato (Ipomoea batatas L.) wine. J Food Process Preserv. 2012;37:596–604.
  • Panda SK, Panda SH, Swain MR, et al. Anthocyanin rich sweet potato (Ipomoea batatas L.) beer: technology, biochemical and sensory evaluation. J Food Process Preserv. 2015;39:3040–3049.
  • Panda SK, Ray RC. Fermented foods and beverages from roots and tubers. In: Sharma HK, Njintang, NY, Singhal, RS, Kaushal, P, editors. Tropical roots and tubers: production, processing and technology. Ist ed. West Sussex, UK: John Wiley & Sons Ltd.; 2016. p. 225–252.
  • Rose AH. Economic microbiology: primary products of metabolism. New York: Academic press; 1978.
  • Roda A, De Faveri DM, Giacosa S, et al. Effect of pre-treatments on the saccharification of pineapple waste as a potential source for vinegar production. J Clean Prod. 2016;112:4477–4484.
  • Anupama RP. Studies on production of single cell protein by Aspergillus niger in solid state fermentation of rice bran. Braz Arc Biol Tech. 2001;44:79–88.
  • Nasseri AT, Rasoul-Amini A, Morowvat MH, et al. Single cell protein: production and process. Am J Food Technol. 2011;6:103–116.
  • Oliveira MA, Reis EM. Biological treatment of wastewater from the cassava meal industry. Environ Res. 2001;85:177–183.
  • Yang SS. Protein enrichment of sweet potato residue with amylolytic yeasts by solid-state fermentation. Biotechnol Bioeng. 1988;32:886–890.
  • Yang SS, Jang HD, Liew CM, et al. Protein enrichment of sweet potato residues by solid-state cultivation with mono-and co-cultures of amylolytic fungi. World J Microbiol Biotechnol. 1993;9:258–264.
  • Mokolensang JF, Yamasaki S, Onone Y. Utilization of sweet potato distillery by products as feedstuff for red carp Cyprinus carpiol. J World Aquaculture Soc. 2003;34:512–517.
  • Ward OP, Singh A, Ray RC. Single-cell protein from horticultural and food processing wastes. In: Ray RC, Ward OP, editors. Microbial biotechnology in horticulture, Volume 3. New Hampshire, USA: Science Publishers; 2008. p. 273–298.
  • Khan M, Khan SS, Ahmed Z, et al. Production of single cell protein from Saccharomyces cerevisiae by utilizing fruit wastes. Nanobiotechnica Universale. 2010;1:127–132.
  • Dhanasekaran D, Lawanya S, Saha S, et al. Production of single cell protein from pineapple waste using yeast. Innov Rom Food Biotechnol. 2011;8:26–32.
  • Yalemtesfa B, Alemu A, Santhanam A. Solid substrate fermentation and conversion of orange waste in to fungal biomass using Aspergillus niger KA-06 and Chaetomium Spp KC-06. Afr J Microbiol Res. 2010;4:1275–1281.
  • Stabonika O, Wang J, Ding HB, et al. Biotransformation of vegetable and fruit processing wastes into yeast biomass enriched with selenium. Bioresour Technol. 2005;96:747–751.
  • Ratledge C. Microorganisms for lipids. Acta Biotechnol. 1991;11:429–438.
  • Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans. 2002;30:1047–1050.
  • Papanikolaou S, Aggelis G. Lipids of oleaginous yeasts. Part 1: biochemistry of single cell oil production. Eur J Lipid Sci Technol. 2011;113:1052–1073.
  • Ratledge C. Single cell oils-have they a biotechnological future? Trends Biotechnol. 1993;11:278–284.
  • Fakas S, Galiotou-Panayotou M, Papanikolaou S, et al. Compositional shifts in lipid fractions during lipid turnover in Cunninghamella echinulata. Enz. Microbiol Technol. 2007;40:1321–1327.
  • Wang Y, Gong Z, Yang X, et al. Microbial lipid production from pectin-derived carbohydrates by oleaginous yeasts. Process Biochem. 2015;50:1097–1102.
  • Muniraj IK, Xiao L, Liu H, et al. Utilisation of potato processing wastewater for microbial lipids and γ-linolenic acid production by oleaginous fungi. J Sci Food Agric. 2015;95:3084–3090.
  • Wang J, Zhang B, Chen S. Oleaginous yeast Yarrowia lipolytica mutants with a disrupted fatty acyl-CoA synthetase gene accumulate saturated fatty acid. Process Biochem. 2011;46:1436–1441.
  • Biotechnology Forums. 2016 [cited 2016 Nov 25]. Available from: www.biotechnologyforums.com.
  • Ray RC, Shetty K, Ward OP. Solid-state fermentation and value-added utilization of horticultural processing wastes. In: Ray RC, Ward OP, editors. Microbial biotechnology in horticulture, Volume 3, New Hampshire, USA: Science Publishers; 2008. p. 231–272.
  • Joshi VK, Attri D, Bala A, et al. Microbial pigments. Indian J Biotechnol. 2003;3:362–369.
  • Buzzini P. Batch and fed-batch carotenoid production by Rhodotorula glutinis-Debaryomyces castellii co-cultures in corn syrup. J Appl Microbiol. 2001;90:843–847.
  • Miura Y, Kondo K, Saito T, et al. Production of the carotenoids lycopene, beta-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol. 1998;64:1226–1229.
  • IAL consultants. London; 2016 [cited 2016 Nov 25]. Available from: www.ialconsultants.com
  • Kranenburg R, Kleerebezem M, Vlieg JH, et al. Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. Int Diary J. 2002;12:111–121.
  • Rijnen L, Courtin P, Gripon JC, et al. Expression of a heterologous glutamate dehydrogenase gene in Lactococcus lactis highly improves the conversion of amino acids to aroma compounds. Appl Environ Microbiol. 2000;66:1354–1359.
  • Badee AZM, Helmy SA, Morsy NFS. Utilisation of orange peel in the production of α-terpineol by Penicillium digitatum (NRRL 1202). Food Chem. 2011;126:849–854.
  • Guneser O, Demirkol A, Yuceer YK, et al. Bioflavour production from tomato and pepper pomaces by Kluyveromyces marxianus and Debaryomyces hansenii. Bioprocess Biosyst Eng. 2015;38:1143–1155.
  • Schwab W. Genetic engineering of plant and microbial cells for flavour production. In: Berger RD. editor. Flavours and fragrances, chemistry, bioprocessing and sustainability. Heidelberg, Germany: Springer-Verlag; 2007. p. 615–628.
  • Castellon M, Alcazar J, Morales A, Lagnaoui A. The potential use of Metarrhizium anisopliae for sweet potato weevils Cylas formicarius control in Cuba. Proceedings of. International Symposium on sweet potato: food and health for the future. International Potato Center (CIP), 2001 Nov 23–29; Lima, Peru; 2001.
  • Deshpande MV. Mycopesticide production by fermentation: potential and challenges. Crit Rev Microbiol. 1999;25:229–243.
  • BBC research. Global Markets for Biopesticides. 2012 [cited 2015 Nov 25]. Available from: http://www.bccresearch.com/pressroom/chm/global-market-pesticides-reach-$65.3-billion-2017
  • Maza N, Morales A, Ortiz O, et al. Economic impact of IPM on the sweet potato weevil (Cylas formicarius Fab.) in Cuba. Lima, Peru: International Potato Center; 2000. p. 52.
  • Desgranges C, Vergoignan C, Lereec A, et al. Use of solid state fermentation to produce Beauveria bassiana for the biological control of European corn borer. Biotechnol Adv. 1993;11:577–587.
  • Sandhu SS, Sharma AK, Beniwal V, et al. Myco-biocontrol of insect pests: factors involved, mechanism, and regulation. J Pathog. 2012;2012:126819.
  • Wu J, Ridgway HJ, Carpenter MA, et al. Identification of novel genes association with conidiation in Beauveria bassiana with suppression subtractive hybridization. Mycologia. 2008;100:20–30.
  • Pulido JM, Guerrero IP, Martinez IJM, et al. Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiol Res. 2011;166:494–507.
  • Soccol CR, Ayala LA, Soccol VT, et al. Spore production by entomopathogenic fungus, Beauveria bassiana from de-classified potatoes by solid state fermentation. Rev Microbiol. 1997;28:34–42.
  • Swain MR, Ray RC. Optimization of cultural conditions and their statistical interpretations for production of indol-3-acetic acid by Bacillus subtilis CM5 using cassava fibrous residue. J Sci Ind Res India. 2008;67:622–628.
  • Swain MR, Naskar SK, Ray RC. Indole-3-acetic acid production and effect on sprouting of yam (Dioscorea rotundata L.) minisetts by Bacillus subtilis isolated from culturable cowdung microflora. Pol J Microbiol. 2007;56:103–110.
  • Pastrana LM, Gonzalez MP, Pintado J, et al. Interactions affecting gibberellic acid production in solid-state culture: a factorial study. Enz Microb Technol. 1995;17:784–790.
  • Haas R, Jin B, Zepf FT. Production of poly(3-hydroxybutyrate) from waste potato starch. Biosci Biotechnol Biochem. 2008;72:253–256.
  • Fernandez D, Rodriguez E, Bassas M, et al. Agro-industrial oily wastes as substrates for PHA production by the new strain Pseudomonas aeruginosa NCIB 40045: effect of culture conditions. Biochem Eng J. 2005;26:159–167.
  • Follonier S, Miriam GS, Silvestri A, et al. Fruit pomace and waste frying oil as sustainable resources for the bioproduction of medium-chain-length polyhydroxyalkanoates. Int J Biol Macromol. 2014;71:42–51.
  • Ribera RG, Monteoliva-Sanchez M. Ramos-Cormenzana Production of polyhidroxyalkanoates by Pseudomonas putida KT2442 harboring pSK2665 in wastewater from olive oil mills (alpechin). Elect J Biotechnol. 2001;4:116–119.
  • Panda SK, Ray RC. Microbial processing for valorization of horticultural wastes. In: Sukla LB, Pradhan N, Panda S, et al., editors. Environmental microbial biotechnology. Switzerland: Springer; 2015. p. 203–221.
  • Renewable Fuels Association. USA; 2016 [cited 2016 Nov 25]. Available from: www.ethanolrfa.org/wp
  • Chin KL, H’ng PS. A real story of bioethanol from biomass: Malaysia perspective. In: Matovic MT, editor. Biomass now-sustainable growth and use Croatia: Intech publishers; 2013. p. 329–346.
  • Huang H, Qureshi N, Chen M, et al. Ethanol production from food waste at high solids content with vacuum recovery technology. J Agric Food Chem. 2015;63:2760–2766.
  • Harsono SS, Salahuddin Fauzi M, et al. Second generation bioethanol from Arabica coffee waste processing at smallholder plantation in Ijen Plateau region of East Java. Procedia Chem. 2015;14:408–413.
  • Pooja NS, Padmaja G. Enhancing the enzymatic saccharification of agricultural and processing wastes of cassava through pretreatment techniques. Waste Biomass Valor. 2015;6:303–315.
  • Ida Y, Furusawa C, Hirasawa T, et al. Stable disruption of ethanol production by deletion of the genes encoding alcohol dehydrogenase isozymes in Saccharomyces cerevisiae. J Biosci Bioeng. 2012;113:192–195.
  • Thammasittirong SN, Thirasaktana T, Thammasittirong A, et al. Improvement of ethanol production by ethanol-tolerant Saccharomyces cerevisiae UVNR56. SpringerPlus. 2013;2:1–5.
  • Jeon E, Hyeon J, Suh DJ, et al. Production of cellulosic ethanol in Saccharomyces cerevisiae heterologous expressing Clostridium thermocellum endoglucanase and Saccharomycopsis fibuligera beta-glucosidase genes. Mol Cells. 2009;28:369–373.
  • Zhang P, Chen C, Shen Y, et al. Starch saccharification and fermentation of uncooked sweet potato roots for fuel ethanol production. Bioresour Technol. 2013;128:835–838.
  • Desiniotis A, Kouvelis VN, Davenport K, et al. Complete genome sequence of the ethanol-producing Zymomonas mobilis subsp. mobilis Centrotype ATCC 29191. J Bacteriol. 2012;194:5966–5967.
  • Ying Z, Ma R, Zhao Z, et al. irrE, an Exogenous gene from Deinococcus radiodurans, improves the growth of and ethanol production by a Zymomonas mobilis strain under ethanol and acid stresses. J Microbiol Biotechnol. 2010;20:1156–1162.
  • Hook SE, Wright AG, McBride BW. Methanogens: methane producers of the rumen and mitigation strategies. Archaea. 2010;2010:945785.
  • Kreuger E, Nges IA, Bjornsson L. Ensiling of crops for biogas production: effects on methane yield and total solids determination. Biotechnol Biofuels. 2011;4:44.
  • Ward OP, Singh A, Ray RC. Production of renewable energy from agricultural and horticultural substrates and wastes. In: Ray RC, Ward, OP, editors. Microbial biotechnology in horticulture, Volume 1, New Hampshire, USA: Science Publishers; 2006. p. 517–558.
  • Hanjie Z. Sludge treatment to increase biogas production. Trita-LWR degree Project. Stockholm, Sweden: Department of Land and Water Resources Engineering Royal Institute of Technology (KTH); 2010.
  • Sagagi BS, Garba B, Usman NS. Studies on biogas production from fruits and vegetable waste. Bayero J Appl Sci. 2009;2:115–118.
  • Victor R, Shajin S, Roshni RM, et al. Augmentative invention of biogas from the agronomic wastes using facultative anaerobic bacterial strain. Int J Curr Microbiol App Sci. 2014;3:556–564.
  • Prakash EV, Singh LP. Biomethanation of vegetable and fruit waste in co-digestion process. Int J Emerg Technol Adv Eng. 2013;3:493–496.
  • Kapadan IK, Kargi F. Biohydrogen production from waste material. Enz. Microb Technol. 2006;38:569–582.
  • Das D, Khanna N, Veziroglu TN. Recent developments in biological hydrogen production processes. CI&CEQ. 2008;14:57–67.
  • Yokoi H, Saitsu AS, Uchida H, et al. Microbial hydrogen production from sweet potato starch residue. J Biosci Bioeng. 2001;91:58–63.
  • Franchi E, Tosi C, Scolla G, et al. Metabolically engineered Rhodobacter sphaeroides RV strains for improved biohydrogen photoproduction combined with disposal of food wastes. Mar Biotechnol. 2004;6:552–565.
  • Zheng M, Zheng M, Wu Y, et al. Effect of pH on types of acidogenic fermentation of fruit and vegetable wastes. Biotechnol Bioproc E. 2015;20:298–303.
  • Iwuagwu JO, Ugwuanyi JO. Treatment and valorization of palm oil mill effluent through production of food grade yeast biomass. J Waste Manag. 2014;2014:1–9.
  • Sirichotpakorn N, Rongnoparut P, Choosang K, et al. Coexpression of chitinase and the cry11Aa1 toxin genes in Bacillus thuringiensis serovar israelensis. J Invertebr Pathol. 2001;78:160–169.
  • Lecadet MM, Chaufaux J, Ribier J, et al. Construction of novel Bacillus thuringiensis strains with different insecticidal activities by transduction and transformation. Appl Environ Microbiol. 1992;58:840–849.
  • Yanase H, Miyawaki H, Sakurai M, et al. Ethanol production from wood hydrolysate using genetically engineered Zymomonas mobilis. Appl Microbiol Biotechnol. 2012;94:1667–1678.
  • Zhang Y, Lin SM, Zhu YJ, et al. Protoplast fusion between Geotrichum candidium and Phanerochaete chrysosporium to produce fusants for corn stover fermentation. Biotechnol Lett. 2006;28:1351–1359.
  • Fan Z, Yuan L, Chatterjee R. Increased hydrogen production by genetic engineering of Escherichia coli. PLoS One. 2009;4:e4432.
  • Moeini H, Nahvi I, Tavassoli M. Improvement of SCP production and BOD removal of whey with mixed yeast culture. Electronic J Biotechnol. 2004;7:06–07.
  • Geng A, He Y, Qian C, et al. Effect of key factors on hydrogen production from cellulose in a coculture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresource Technol. 2010;101:4029–4033.
  • Chandrasekhar K, Lee YJ, Lee DW. Biohydrogen production: Strategies to improve process efficiency through microbial routes. Int J Mol Sci. 2015;16:8266–8293.
  • Gupta N, Pal M, Sachdeva M, et al. Thermophilic biohydrogen production for commercial application: the whole picture. Int J Energy Res. 2016;40:127–145.
  • Parmar M, Phutela UG. Biocolors: the new generation additives. Int J Curr Microbiol App Sci. 2015;4:688–694.
  • Mi J, Becher D, Lubuta P, et al. De novo production of the monoterpenoid geranic acid by metabolically engineered Pseudomonas putida. Microb Cell Fact. 2014;13:170.
  • Chen H, Fu X. Industrial technologies for bioethanol production from lignocellulosic biomass. Renew Sust Energ Rev. 2016;57:468–478.
  • Behera SS, Ray RC. Solid state fermentation for production of microbial cellulases: recent advances and improvement strategies. Int J Biol Macromol. 2016;86:656–669.
  • ElMekawy A, Diels L, De Wever H, et al. Valorization of cereal based biorefinery byproducts: reality and expectations. Environ Sci Technol. 2013;47:9014–9027.
  • Boussaid AL, Esteghlalian AR, Gregg DJ, et al. Steam pretreatment of Douglas-Fir wood chips. ABAB. 2000;84–86:693–706.
  • Elshahed MS. Microbiological aspects of biofuel production: current status and future directions. J Adv Res. 2010;1:103–111.
  • JEC Group. 2016 [cited 2016 Nov 25]. Available from: www.jeccomposites.com.
  • Gaur S, Mathur N, Singh A, et al. Single cell protein production: a review. Int J Curr Microbial Appl Sci. 2015;4:251–262.
  • Pandey AK, Mishra BK, Arora A, et al. Bioaugmentation and biovalorization of agro-food and beverage industry effluents. In: Singh A, Parmar N, Kuhad RC, editors. Bioaugmentation, biostimulation and biocontrol, Part 1, Heidelberg, Germany: Springer; 2011. p. 85–126.
  • Zhao L, Zhang X, Xu J, et al. Techno-economic analysis of bioethanol production from lignocellulosic biomass in China: dilute-acid pretreatment and enzymatic hydrolysis of corn stover. Energies. 2015;8:4096–4117.
  • Zhang Y, Brown TR, Hu G, et al. Comparative techno-economic analysis of biohydrogen production via bio-oil gasification and bio-oil reforming. Biomass Bioenerg. 2013;51:99–108.
  • Alves SB, Pereira RM, Lopes RB, Tamai MA. Use of entomopathogenic fungi in Latin America. In: Updhayay RK, editor. Advances in microbial control of insect pests, New York, Springer; 2002. p. 193–211.
  • Alvarez J. Transformations in Cuban agriculture after 1959. Gainesville, Florida: University of Florida IFAS Extension. 2004 [cited 2016 Mar 15]. Available from: http://edis.ifas.ufl.edu/fe481.
  • Biogas from vegetable waste. 2016 [cited 2016 Mar 15]. Available from: https://www.youtube.com/watch?v=Hhhe4Uc2mME
  • Global Spirits, Inc. 2016 [cited 2016 Mar 15]. Available from: www.goafeni.com/aboutdrink.htm
  • Ferrer M, Martinez‐Martinez M, Bargiela R, et al. Estimating the success of enzyme bioprospecting through metagenomics: current status and future trends. Microbial Biotechnol. 2016;9:22–34.
  • Carta G, Jungbauer A. Downstream processing of biotechnology products. Protein chromatography: Process development and scale-up. Germany: Wiley-VCH Verlag GmbH & Co; 2010.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.