1,153
Views
72
CrossRef citations to date
0
Altmetric
Review Article

Plant protein-based hydrophobic fine and ultrafine carrier particles in drug delivery systems

, , , , , , & show all
Pages 47-67 | Received 19 Jun 2015, Accepted 02 Jan 2017, Published online: 24 Apr 2017

References

  • Karimi M, Eslami M, Sahandi-Zangabad P, et al. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. WIREs Nanomed Nanobiotechnol. 2016;8:696–716.
  • Karimi M, Avci P, Ahi M, et al. Evaluation of chitosan-tripolyphosphate nanoparticles as a p-shRNA delivery vector: formulation, optimization and cellular uptake study. J Nanopharm Drug Deliv. 2013;1:266–278.
  • Mofazzal Jahromi MA, Karimi M, Azadmanesh K, et al. The effect of chitosan-tripolyphosphate nanoparticles on maturation and function of dendritic cells. Comp Clin Pathol. 2014;23:1421–1427.
  • Karimi M, Sahandi Zangabad P, Ghasemi A, et al. Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances. ACS Appl Mater Interfaces. 2016;8:21107–21133.
  • Karimi M, Zangabad PS, Ghasemi A, et al. Smart internal stimulus-responsive nanocarriers for drug and gene delivery. IOP Concise Physics; 2015.
  • Karimi M, Zare H, Bakhshian Nik A, et al. Nanotechnology in diagnosis and treatment of coronary artery disease. Nanomedicine (Lond). 2016;11:513–530.
  • Karimi M, Ghasemi A, Zangabad PS, et al. Smart micro/nanoparticles in stimulus-responsive drug/gene delivery systems. Chem Soc Rev. 2016;45:1457–1501.
  • Karimi M, Zangabad PS, Ghasemi A, et al. Light-sensitive nanocarriers. In: Smart external stimulus-responsive nanocarriers for drug and gene delivery. California: Morgan & Claypool Publishers; 2015.
  • Singh R, Lillard JW. Nanoparticle-based targeted drug delivery. Exp Mol Pathol. 2009;86:215–223.
  • Karimi M, Bahrami S, Ravari SB, et al. Albumin nanostructures as advanced drug delivery systems. Expert Opin Drug Delivery. 2016;13:1609–1623.
  • Karimi M, Mirshekari H, Aliakbari M, et al. Smart mesoporous silica nanoparticles for controlled-release drug delivery. Nanotechnol Rev. 2016;5:195–207.
  • Khan H, Shukla RN, Bajpai AK. Genipin-modified gelatin nanocarriers as swelling controlled drug delivery system for in vitro release of cytarabine. Mater Sci Eng: C. 2016;61:457–465.
  • El-Samaligy MS, Rohdewald P. Reconstituted collagen nanoparticles, a novel drug carrier delivery system. J Pharm Pharmacol. 1983;35:537–539.
  • Elzoghby AO, Samy WM, Elgindy NA. Albumin-based nanoparticles as potential controlled release drug delivery systems. J Control Release. 2012;157:168–182.
  • Elzoghby AO, Abo El-Fotoh WS, Elgindy NA. Casein-based formulations as promising controlled release drug delivery systems. J Control Release. 2011;153:206–216.
  • Mottaghitalab F, Farokhi M, Shokrgozar MA, et al. Silk fibroin nanoparticle as a novel drug delivery system. J Control Release. 2015;206:161–176.
  • Elzoghby AO, Samy WM, Elgindy NA. Protein-based nanocarriers as promising drug and gene delivery systems. J Control Release. 2012;161:38–49.
  • Gujrati V, Kim S, Kim S-H, et al. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano. 2014;8:1525–1537.
  • Din MO, Danino T, Prindle A, et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature. 2016;536:81–85.
  • Ma Y, Nolte RJM, Cornelissen JJLM. Virus-based nanocarriers for drug delivery. Adv Drug Deliv Rev. 2012;64:811–825.
  • Yoo J-W, Irvine DJ, Discher DE, et al. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10:521–535.
  • Fliervoet LA, Mastrobattista E. Drug delivery with living cells. Adv Drug Deliv Rev. 2016;106:63–72.
  • Slomovic S, Pardee K, Collins JJ. Synthetic biology devices for in vitro and in vivo diagnostics. Proc Natl Acad Sci U S A. 2015;112:14429–14435.
  • Claesen J, Fischbach MA. Synthetic microbes as drug delivery systems. ACS Synth Biol. 2014;4:358–364.
  • Beneke CE, Viljoen AM, Hamman JH. Polymeric plant-derived excipients in drug delivery. Molecules. 2009;14:2602–2620.
  • Reddy N, Yang Y. Potential of plant proteins for medical applications. Trends Biotechnol. 2011;29:490–498.
  • Nitta SK, Numata K. Biopolymer-based nanoparticles for drug/gene delivery and tissue engineering. IJMS. 2013;14:1629–1654.
  • Salatin S, Jelvehgari M, Maleki-Dizaj S, et al. A sight on protein-based nanoparticles as drug/gene delivery systems. Ther Deliv. 2015;6:1017–1029.
  • Lohcharoenkal W, Wang L, Chen YC, et al. Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Res Int. 2014;2014:12.
  • Podaralla S, Averineni R, Alqahtani M, et al. Synthesis of novel biodegradable methoxy poly (ethylene glycol)‚ ÄìZein Micelles for effective delivery of curcumin. Mol Pharm. 2012;9:2778–2786.
  • Joye IJ, Nelis VA, McClements DJ. Gliadin-based nanoparticles: fabrication and stability of food-grade colloidal delivery systems. Food Hydrocoll. 2015;44:86–93.
  • Patel AR, Velikov KP. Zein as a source of functional colloidal nano- and microstructures. Curr Opin Colloid Interface Sci. 2014;19:450–458.
  • Podaralla S, Perumal O. Influence of formulation factors on the preparation of zein nanoparticles. AAPS Pharmscitech. 2012;13:919–927.
  • Liu X, Sun Q, Wang H, et al. Microspheres of corn protein, zein, for an ivermectin drug delivery system. Biomaterials. 2005;26:109–115.
  • Zhong Q, Jin M. Zein nanoparticles produced by liquid–liquid dispersion. Food Hydrocoll. 2009;23:2380–2387.
  • Regier MC, Taylor JD, Borcyk T, et al. Fabrication and characterization of DNA-loaded zein nanospheres. J Nanobiotechnol. 2012;10:44.
  • Wang F, Wang Y, Zhang X, et al. Recent progress of cell-penetrating peptides as new carriers for intracellular cargo delivery. J Control Release. 2014;174:126–136.
  • Penalva R, González-Navarro CJ, Gamazo C, et al. Zein nanoparticles for oral delivery of quercetin: pharmacokinetic studies and preventive anti-inflammatory effects in a mouse model of endotoxemia. Nanomed: Nanotechnol Biol Med. 2017;13:103–110.
  • Hädrich G, Vaz GR, Maidana M, et al. Anti-inflammatory effect and toxicology analysis of oral delivery quercetin nanosized emulsion in rats. Pharm Res. 2016;33:983–993.
  • Penalva R, Esparza I, Larraneta E, et al. Zein-based nanoparticles improve the oral bioavailability of resveratrol and its anti-inflammatory effects in a mouse model of endotoxic shock. J Agric Food Chem. 2015;63:5603–5611.
  • Zou T, Gu L. TPGS emulsified zein nanoparticles enhanced oral bioavailability of daidzin: in vitro characteristics and in vivo performance. Mol Pharm. 2013;10:2062–2070.
  • Xu H, Shen L, Xu L, et al. Controlled delivery of hollow corn protein nanoparticles via non-toxic crosslinking: in vivo and drug loading study. Biomed Microdevices. 2015;17:1–8.
  • Nesterenko A, Alric I, Silvestre F, et al. Vegetable proteins in microencapsulation: a review of recent interventions and their effectiveness. Ind Crops Prod. 2013;42:469–479.
  • Bietz J, Rothfus J. Comparison of peptides from wheat gliadin and glutenin. Cereal Chem. 1970;47:381–392.
  • Reddy N, Shi Z, Xu H, et al. Development of wheat glutenin nanoparticles and their biodistribution in mice. J Biomed Mater Res. 2015;103:1653–1658.
  • Byers M, Miflin BJ, Smith SJ. A quantitative comparison of the extraction of protein fractions from wheat grain by different solvents, and of the polypeptide and amino acid composition of the alcohol-soluble proteins. J Sci Food Agric. 1983;34:447–462.
  • He H, Roach R, Hoseney R. Effect of nonchaotropic salts on flour bread-making properties. Cereal Chem. 1992;69:366–371.
  • Pinto Reis C, Neufeld RJ, Ribeiro AJ, et al. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomed: Nanotechnol Biol Med. 2006;2:8–21.
  • Sailaja A, Amareshwar P, Chakravarty P. Different techniques used for the preparation of nanoparticles using natural polymers and their application. Int J Pharm Pharm Sci. 2011;3(Suppl 2):45–50.
  • Nehete JY, Bhambar RS, Narkhede MR, et al. Natural proteins: sources, isolation, characterization and applications. Phcog Rev. 2013;7:107–116.
  • Sripriyalakshmi S, Jose P, Ravindran A, et al. Recent trends in drug delivery system using protein nanoparticles. Cell Biochem Biophys. 2014;70:17–26.
  • Mirshahi T, Irache J, Nicolas C, et al. Adaptive immune responses of legumin nanoparticles. J Drug Target. 2002;10:625–631.
  • Peumans WJ, van Damme EJ, Barre A, et al. Classification of plant lectins in families of structurally and evolutionary related proteins. In: Wu AM, editor. The molecular immunology of complex carbohydrates—2. Springer US; 2001. p. 27–54.
  • Lehr C-M, Haas J. Developments in the area of bioadhesive drug delivery systems. Expert Opin Biol Ther. 2002;2:287–298.
  • Peumans WJ, Van Damme EJ. Lectins as plant defense proteins. Plant Physiol. 1995;109:347–352.
  • Peumans WJ, Damme EJV. Plant lectins: versatile proteins with important perspectives in biotechnology. Biotechnol Genet Eng Rev. 1998;15:199–228.
  • Boyd WC, Shapleigh E. Specific precipitating activity of plant Agglutinins (Lectins). Science. 1954;119:419.
  • Sharon N, Lis H. Lectins: cell-agglutinating and sugar-specific proteins. Science. 1972;177:949–959.
  • Loris R, Hamelryck T, Bouckaert J, et al. Legume lectin structure. Biochim Biophys Acta (BBA) – Protein Struct Mol Enzymol. 1998;1383:9–36.
  • Damme EJ, Kaku H, Perini F, et al. Biosynthesis, primary structure and molecular cloning of snowdrop (Galanthus nivalis L.) lectin. Eur J Biochem. 1991;202:23–30.
  • Meyer A, Rypniewski W, Szyma≈Ñski M, et al. Structure of mistletoe lectin I from Viscum album in complex with the phytohormone zeatin. Biochim Biophys Acta. 2008;1784:1590–1595.
  • Matsushima N, Danno G-i, Takezawa H, et al. Three-dimensional structure of maize α-zein proteins studied by small-angle X-ray scattering. Biochim Biophys Acta (BBA) – Protein Struct Mol Enzymol. 1997;1339:14–22.
  • Sousa F, Luzardo-Álvarez A, Blanco-Méndez J, et al. NMR techniques in drug delivery: application to zein protein complexes. Int J Pharm. 2012;439(1):41–48.
  • Wang Q, Yin L, Padua GW. Effect of hydrophilic and lipophilic compounds on zein microstructures. Food Biophys. 2008;3:174–181.
  • Karthikeyan K, Vijayalakshmi E, Korrapati PS. Selective interactions of zein microspheres with different class of drugs: an in vitro and in silico analysis. AAPS PharmSciTech. 2014;15:1172–1180.
  • Chen Y, Ye R, Liu J. Understanding of dispersion and aggregation of suspensions of zein nanoparticles in aqueous alcohol solutions after thermal treatment. Ind Crops Prod. 2013;50:764–770.
  • Zhou P, Xia Y, Cheng X, et al. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2. Biomaterials. 2014;35:10033–10045.
  • Luo Y, Zhang B, Whent M, et al. Preparation and characterization of zein/chitosan complex for encapsulation of α-tocopherol, and its in vitro controlled release study. Colloids Surf B Biointerfaces. 2011;85:145–152.
  • Lee S, Alwahab NSA, Moazzam ZM. Zein-based oral drug delivery system targeting activated macrophages. Int J Pharm. 2013;454:388–393.
  • Podaralla SK, Perumal OP, Kaushik RS. Design and formulation of protein-based NPDDS. Drug Delivery Nanoparticles Formul Character. 2009;191:69.
  • Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci Technol. 2013;34:109–123.
  • Luo Y, Teng Z, Wang TT, et al. Cellular uptake and transport of zein nanoparticles: effects of sodium caseinate. J Agric Food Chem. 2013;61:7621–7629.
  • Li K-K, Yin S-W, Yin Y-C, et al. Preparation of water-soluble antimicrobial zein nanoparticles by a modified antisolvent approach and their characterization. J Food Eng. 2013;119:343–352.
  • Zhong Q, Tian H, Zivanovic S. Encapsulation of fish oil in solid zein particles by liquid‐liquid dispersion. J Food Process Preserv. 2009;33:255–270.
  • Wu Y, Luo Y, Wang Q. Antioxidant and antimicrobial properties of essential oils encapsulated in zein nanoparticles prepared by liquid–liquid dispersion method. LWT-Food Sci Technol. 2012;48:283–290.
  • Zou T, Li Z, Percival SS, et al. Fabrication, characterization, and cytotoxicity evaluation of cranberry procyanidins-zein nanoparticles. Food Hydrocoll. 2012;27:293–300.
  • Chen J, Zheng J, McClements DJ, et al. Tangeretin-loaded protein nanoparticles fabricated from zein/β-lactoglobulin: preparation, characterization, and functional performance. Food Chem. 2014;158:466–472.
  • Hu K, McClements DJ. Fabrication of biopolymer nanoparticles by antisolvent precipitation and electrostatic deposition: zein–alginate core/shell nanoparticles. Food Hydrocoll. 2015;44:101–108.
  • Hu K, McClements DJ. Fabrication of surfactant-stabilized zein nanoparticles: a pH modulated antisolvent precipitation method. Food Res Int. 2014;64:329–335.
  • Luo Y, Wang TT, Teng Z, et al. Encapsulation of indole-3-carbinol and 3, 3′-diindolylmethane in zein/carboxymethyl chitosan nanoparticles with controlled release property and improved stability. Food Chem. 2013;139:224–230.
  • Lai L, Guo H. Preparation of new 5-fluorouracil-loaded zein nanoparticles for liver targeting. Int J Pharm. 2011;404:317–323.
  • Hu D, Lin C, Liu L, et al. Preparation, characterization, and in vitro release investigation of lutein/zein nanoparticles via solution enhanced dispersion by supercritical fluids. J Food Eng. 2012;109:545–552.
  • Sridhar R, Lakshminarayanan R, Madhaiyan K, et al. Electrosprayed nanoparticles and electrospun nanofibers based on natural materials: applications in tissue regeneration, drug delivery and pharmaceuticals. Chem Soc Rev. 2015;44:790–814.
  • Hu X, Liu S, Zhou G, et al. Electrospinning of polymeric nanofibers for drug delivery applications. J Control Release. 2014;185:12–21.
  • Karthikeyan K, Guhathakarta S, Rajaram R, et al. Electrospun zein/eudragit nanofibers based dual drug delivery system for the simultaneous delivery of aceclofenac and pantoprazole. Int J Pharm. 2012;438(1):117–122.
  • Jiang Y-N, Mo H-Y, Yu D-G. Electrospun drug-loaded core–sheath PVP/zein nanofibers for biphasic drug release. Int J Pharm. 2012;438:232–239.
  • Yang J-M, Zha L-S, Yu D-G, et al. Coaxial electrospinning with acetic acid for preparing ferulic acid/zein composite fibers with improved drug release profiles. Colloids Surf B: Biointerfaces. 2013;102:737–743.
  • Huang W, Zou T, Li S, et al. Drug-loaded zein nanofibers prepared using a modified coaxial electrospinning process. AAPS PharmSciTech. 2013;14:675–681.
  • Unnithan AR, Gnanasekaran G, Sathishkumar Y, et al. Electrospun antibacterial polyurethane-cellulose acetate-zein composite mats for wound dressing. Carbohydr Polym. 2014;102:884–892.
  • Podaralla S, Averineni R, Alqahtani M, et al. Synthesis of novel biodegradable methoxy poly (ethylene glycol)–zein micelles for effective delivery of curcumin. Mol Pharm. 2012;9:2778–2786.
  • Gomez-Estaca J, Balaguer M, Gavara R, et al. Formation of zein nanoparticles by electrohydrodynamic atomization: effect of the main processing variables and suitability for encapsulating the food coloring and active ingredient curcumin. Food Hydrocoll. 2012;28:82–91.
  • Karthikeyan K, Krishnaswamy VR, Lakra R, et al. Fabrication of electrospun zein nanofibers for the sustained delivery of siRNA. J Mater Sci: Mater Med. 2015;26:1–8.
  • Wang P, Tao H, Wu F, et al. Effect of frozen storage on the foaming properties of wheat gliadin. Food Chem. 2014;164:44–49.
  • Thewissen BG, Celus I, Brijs K, et al. Foaming properties of wheat gliadin. J Agric Food Chem. 2011;59:1370–1375.
  • Biancheri P, Giuffrida P, Docena GH, et al. The role of transforming growth factor (TGF)-β in modulating the immune response and fibrogenesis in the gut. Cytokine Growth Factor Rev. 2014;25:45–55.
  • Neves MM, González-García MB, Santos-Silva A, et al. Voltammetric immunosensor for the diagnosis of celiac disease based on the quantification of anti-gliadin antibodies. Sens Actuators B Chem. 2012;163:253–259.
  • Duclairoir C, Irache JM, Nakache E, et al. Gliadin nanoparticles: formation, all‐trans‐retinoic acid entrapment and release, size optimization. Polym Int. 1999;48:327–333.
  • Orecchioni A-M, Duclairoir C, Renard D, et al. Gliadin characterization by sans and gliadin nanoparticle growth modelization. J Nanosci Nanotechnol. 2006;6:9–10.
  • Jahanshahi M, Babaei Z. Protein nanoparticle: a unique system as drug delivery vehicles. Afr J Biotechnol. 2008;7:4926–4934.
  • Arangoa M, Ponchel G, Orecchioni A, et al. Bioadhesive potential of gliadin nanoparticulate systems. Eur J Pharm Sci. 2000;11:333–341.
  • Arangoa MA, Campanero MA, Renedo MJ, et al. Gliadin nanoparticles as carriers for the oral administration of lipophilic drugs. Relationships between bioadhesion and pharmacokinetics. Pharm Res. 2001;18:1521–1527.
  • Lopes D, Nunes C, Martins MCL, et al. Eradication of Helicobacter pylori: past, present and future. J Control Release. 2014;189:169–186.
  • Ramteke S, Jain NK. Clarithromycin- and omeprazole-containing gliadin nanoparticles for the treatment of Helicobacter pylori. J Drug Target. 2008;16:65–72.
  • Umamaheshwari R, Ramteke S, Jain NK. Anti-Helicobacter pylori effect of mucoadhesive nanoparticles bearing amoxicillin in experimental gerbils model. AAPS Pharmscitech. 2004;5:60–68.
  • Ramteke S, Ganesh N, Bhattacharya S, et al. Triple therapy-based targeted nanoparticles for the treatment of Helicobacter pylori. J Drug Target. 2008;16:694–705.
  • Carillon J, Rouanet J-M, Cristol J-P, et al. Superoxide dismutase administration, a potential therapy against oxidative stress related diseases: several routes of supplementation and proposal of an original mechanism of action. Pharm Res. 2013;30:2718–2728.
  • Fajardo P, Balaguer MP, Gomez-Estaca J, et al. Chemically modified gliadins as sustained release systems for lysozyme. Food Hydrocoll. 2014;41:53–59.
  • Kim S, Kim YS. Production of gliadin-poly (ethyl cyanoacrylate) nanoparticles for hydrophilic coating. J Nanopart Res. 2014;16:1–10.
  • Duclairoir C, Orecchioni A-M, Depraetere P, et al. Evaluation of gliadins nanoparticles as drug delivery systems: a study of three different drugs. Int J Pharm. 2003;253(1):133–144.
  • Loveday SM, Singh H. Recent advances in technologies for vitamin A protection in foods. Trends Food Sci Technol. 2008;19:657–668.
  • Gulfam M, Kim J-E, Lee JM, et al. Anticancer drug-loaded gliadin nanoparticles induce apoptosis in breast cancer cells. Langmuir. 2012;28:8216–8223.
  • Derbyshire E, Wright D, Boulter D. Legumin and vicilin, storage proteins of legume seeds. Phytochemistry. 1976;15:3–24.
  • Bailey CJ, Boulter D. The structure of legumin, a storage protein of broad bean (Vicia faba) seed. Eur J Biochem. 1970;17:460–466.
  • Popello IA, Suchkov VV, Grinberg VY, et al. Liquid/liquid phase equilibrium in globulin/salt/water systems: legumin. J Sci Food Agric. 1990;51:345–353.
  • Schwenke KD, Zirwer D, Gast K, et al. Changes of the oligomeric structure of legumin from pea (Pisum sativum L.) after succinylation. Eur J Biochem. 1990;194:621–627.
  • Argos P, Narayana S, Nielsen N. Structural similarity between legumin and vicilin storage proteins from legumes. EMBO J. 1985;4:1111.
  • Patel P, Panchal H. In silico structure modeling and comparative analysis of characterization properties of protein polymers useful for protein-based Nano Particulate Drug Delivery Systems (NPDDS): a bioinformatics approach. Int J Pept Res Ther. 2014;20:103–108.
  • Ezpeleta I, Irache JM, Stainmesse S, et al. Preparation of small-sized particles from vicilin (vegetal protein from Pisum sativum L.) by coacervation. Eur J Pharm Biopharm. 1996;42:36–41.
  • Mirshahi T, Irache J, Gueguen J, et al. Development of drug delivery systems from vegetal proteins: legumin nanoparticles. Drug Dev Ind Pharm. 1996;22:841–846.
  • Ezpeleta I, Rache J, Gueguen J, et al. Properties of glutaraldehyde cross-linked vicilin nano- and microparticles. J Microencapsul. 1997;14:557–565.
  • Wang G, Siggers K, Zhang S, et al. Preparation of BMP-2 containing bovine serum albumin (BSA) nanoparticles stabilized by polymer coating. Pharm Res. 2008;25:2896–2909.
  • Langer K, Balthasar S, Vogel V, et al. Optimization of the preparation process for human serum albumin (HSA) nanoparticles. Int J Pharm. 2003;257:169–180.
  • Irache JM, Bergougnoux L, Ezpeleta I, et al. Optimization and in vitro stability of legumin nanoparticles obtained by a coacervation method. Int J Pharm. 1995;126:103–109.
  • Wang G, Uludag H. Recent developments in nanoparticle-based drug delivery and targeting systems with emphasis on protein-based nanoparticles. Expert Opin Drug Deliv. 2008;5:499–515.
  • Merodio M, Arnedo A, Renedo MJ, et al. Ganciclovir-loaded albumin nanoparticles: characterization and in vitro release properties. Eur J Pharm Sci. 2001;12:251–259.
  • Ezpeleta I, Irache JM, Stainmesse S, et al. Preparation of lectin-vicilin nanoparticle conjugates using the carbodiimide coupling technique. Int J Pharm. 1996;142:227–233.
  • Nishinari K, Fang Y, Guo S, et al. Soy proteins: a review on composition, aggregation and emulsification. Food Hydrocoll. 2014;39:301–318.
  • Teng Z, Luo Y, Wang Q. Carboxymethyl chitosan–soy protein complex nanoparticles for the encapsulation and controlled release of vitamin D3. Food Chem. 2013;141:524–532.
  • Deng X-X, Zhang N, Tang C-H. Soy protein isolate as a nanocarrier for enhanced water dispersibility, stability and bioaccessibility of β-carotene. J Sci Food Agric. 2017;97:2230–2237.
  • Chen F-P, Ou S-Y, Tang C-H. Core–shell soy protein–soy polysaccharide complex (nano)particles as carriers for improved stability and sustained release of curcumin. J Agric Food Chem. 2016;64:5053–5059.
  • Teng Z, Luo Y, Wang Q. Nanoparticles synthesized from soy protein: preparation, characterization, and application for nutraceutical encapsulation. J Agric Food Chem. 2012;60:2712–2720.
  • Basak A, Chahatray R, Nayak P. Soy protein isolate blended with cloisite 30B for controlled release of anticancer drug vincristine. World. 2014;3:39–44.
  • Lis H, Sharon N. Lectins: carbohydrate-specific proteins that mediate cellular recognition. Chem Rev. 1998;98:637–674.
  • Damme EJV, Peumans WJ, Barre A, et al. Plant lectins: a composite of several distinct families of structurally and evolutionary related proteins with diverse biological roles. Crit Rev Plant Sci. 1998;17:575–692.
  • Barre A, Bourne Y, Van Damme EJ, et al. Mannose-binding plant lectins: different structural scaffolds for a common sugar-recognition process. Biochimie. 2001;83:645–651.
  • Teuschl AH, Neutsch L, Monforte X, et al. Enhanced cell adhesion on silk fibroin via lectin surface modification. Acta Biomater. 2014;10:2506–2517.
  • Sharon N. Lectins: carbohydrate-specific reagents and biological recognition molecules. J Biol Chem. 2007;282:2753–2764.
  • Han JW, Yoon KS, Klochkova TA, et al. Purification and characterization of a lectin, BPL-3, from the marine green alga Bryopsis plumosa. J Appl Phycol. 2011;23:745–753.
  • Liu Y, Wang P, Sun C, et al. Bioadhesion and enhanced bioavailability by wheat germ agglutinin-grafted lipid nanoparticles for oral delivery of poorly water-soluble drug bufalin. Int J Pharm. 2011;419:260–265.
  • Li H, Dong W-F, Zhou J-Y, et al. Triggering effect of N-acetylglucosamine on retarded drug release from a lectin-anchored chitosan nanoparticles-in-microparticles system. Int J Pharm. 2013;449:37–43.
  • Chirra HD, Desai TA. Emerging microtechnologies for the development of oral drug delivery devices. Adv Drug Deliv Rev. 2012;64:1569–1578.
  • Qaddoumi M, Lee VH. Lectins as endocytic ligands: an assessment of lectin binding and uptake to rabbit conjunctival epithelial cells. Pharm Res. 2004;21:1160–1166.
  • Dan X, Liu W, Ng TB. Development and applications of lectins as biological tools in biomedical research. Med Res Rev. 2016;36:221–247.
  • Iordache F, Ionita M, Mitrea LI, et al. Antimicrobial and antiparasitic activity of lectins. Curr Pharm Biotechnol. 2015;16:152–161.
  • Hakim RS, Baldwin K, Smagghe G. Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol. 2010;55:593–608.
  • Thakur K, Kaur M, Kaur S, et al. Purification of Colocasia esculenta lectin and determination of its anti-insect potential towards Bactrocera cucurbitae. J Environ Biol. 2013;34:31–36.
  • Magalhães A, Gomes J, Ismail MN, et al. Fut2-null mice display an altered glycosylation profile and impaired BabA-mediated Helicobacter pylori adhesion to gastric mucosa. Glycobiology. 2009;19:1525–1536.
  • Mukhopadhyay B, Martins MB, Karamanska R, et al. Bacterial detection using carbohydrate-functionalised CdS quantum dots: a model study exploiting E. coli recognition of mannosides. Tetrahedron Lett. 2009;50:886–889.
  • Sá RA, Gomes FS, Napoleão TH, et al. Antibacterial and antifungal activities of Myracrodruon urundeuva heartwood. Wood Sci Technol. 2009;43:85–95.
  • Swanson MD, Winter HC, Goldstein IJ, et al. A lectin isolated from bananas is a potent inhibitor of HIV replication. J Biol Chem. 2010;285:8646–8655.
  • Granell A, Fernández-del-Carmen A, Orzáez D. In planta production of plant-derived and non-plant-derived adjuvants. Expert Rev Vaccines. 2010;9:843–858.
  • Hamid R, Masood A, Wani IH, et al. Lectins: proteins with diverse applications. J Appl Pharm Sci. 2013;3(4 Suppl 1):S93–S103.
  • Gavrovic-Jankulovic M, Prodanovic R. Drug delivery: plant lectins as bioadhesive drug delivery systems. JBNB. 2011;2:614–621.
  • Lu Q, Li N, Luo J, et al. Pinellia pedatisecta agglutinin interacts with the methylosome and induces cancer cell death. Oncogenesis. 2012;1:e29.
  • Bergström M, Åström E, Påhlsson P, et al. Elucidating the selectivity of recombinant forms of Aleuria aurantia lectin using weak affinity chromatography. J Chromatogr B. 2012;885:66–72.
  • Basuki JS, Esser L, Duong HT, et al. Magnetic nanoparticles with diblock glycopolymer shells give lectin concentration-dependent MRI signals and selective cell uptake. Chem Sci. 2014;5:715–726.
  • Zhang G, Sun J, Wang H, et al. First isolation and characterization of a novel lectin with potent antitumor activity from a Russula mushroom. Phytomedicine. 2010;17:775–781.
  • Zuo Z, Fan H, Wang X, et al. Purification and characterization of a novel plant lectin from Pinellia ternata with antineoplastic activity. SpringerPlus. 2012;1:1–9.
  • Pernot M, Frochot C, Vanderesse R, et al. Targeting strategies in photodynamic therapy for cancer treatment. In: Michael H, Ying-Ying H, editors. Handbook of photomedecine. New York: Taylor & Francis, CRC Press; 2013. p. 341–352.
  • Narayanan S, Surendranath K, Bora N, et al. Ribosome inactivating proteins and apoptosis. FEBS Lett. 2005;579:1324–1331.
  • Plattner VE, Wagner M, Ratzinger G, et al. Targeted drug delivery: binding and uptake of plant lectins using human 5637 bladder cancer cells. Eur J Pharm Biopharm. 2008;70:572–576.
  • Liu B, Cheng Y, Bian H-J, et al. Molecular mechanisms of Polygonatum cyrtonema lectin-induced apoptosis and autophagy in cancer cells. Autophagy. 2009;5:253–255.
  • Jung MG, Lee KP, Choi H-G, et al. Characterization of carbohydrate combining sites of Bryohealin, an algal lectin from Bryopsis plumosa. J Appl Phycol. 2010;22:793–802.
  • Bies C, Lehr C-M, Woodley JF. Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev. 2004;56:425–435.
  • Gabor F, Bogner E, Weissenboeck A, et al. The lectin–cell interaction and its implications to intestinal lectin-mediated drug delivery. Adv Drug Deliv Rev. 2004;56:459–480.
  • Neutsch L, Wirth E-M, Spijker S, et al. Synergistic targeting/prodrug strategies for intravesical drug delivery-lectin-modified PLGA microparticles enhance cytotoxicity of stearoyl gemcitabine by contact-dependent transfer. J Control Release. 2013;169:62–72.
  • Chen J, Zhang C, Liu Q, et al. Solanum tuberosum lectin-conjugated PLGA nanoparticles for nose-to-brain delivery: in vivo and in vitro evaluations. J Drug Target. 2012;20:174–184.
  • Ensign LM, Cone R, Hanes J. Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv Drug Deliv Rev. 2012;64:557–570.
  • Wang X-Y, Koller R, Wirth M, et al. Lectin-coated PLGA microparticles: thermoresponsive release and in vitro evidence for enhanced cell interaction. Int J Pharm. 2012;436:738–743.
  • Jain SK, Gupta M, Sahoo AK, et al. Lectin conjugated gastro-retentive microspheres of amoxicillin for effective treatment of Helicobacter pylori. Curr Sci. 2014;106:267–276.
  • Gupta A, Gupta RK, Gupta G. Targeting cells for drug and gene delivery: emerging applications of mannans and mannan binding lectins. J Sci Ind Res. 2009;68:465–483.
  • Wang X-Y, Koller R, Wirth M, et al. Lectin-grafted PLGA microcarriers loaded with fluorescent model drugs: characteristics, release profiles, and cytoadhesion studies. Sci Pharm. 2014;82:193–205.
  • Wen Z, Yan Z, Hu K, et al. Odorranalectin-conjugated nanoparticles: preparation, brain delivery and pharmacodynamic study on Parkinson's disease following intranasal administration. J Control Release. 2011;151:131–138.
  • da Cruz Cabral L, Fernández Pinto V, Patriarca A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. Int J Food Microbiol. 2013;166:1–14.
  • Diesner SC, Wang X-Y, Jensen-Jarolim E, et al. Use of lectin-functionalized particles for oral immunotherapy. Ther Deliv. 2012;3:277–290.
  • Minko T. Drug targeting to the colon with lectins and neoglycoconjugates. Adv Drug Deliv Rev. 2004;56:491–509.
  • des Rieux A, Fievez V, Garinot M, et al. Nanoparticles as potential oral delivery systems of proteins and vaccines: a mechanistic approach. J Control Release. 2006;116:1–27.
  • Liu B, Bian H-J, Bao J-K. Plant lectins: potential antineoplastic drugs from bench to clinic. Cancer Lett. 2010;287:1–12.
  • Ghazarian H, Idoni B, Oppenheimer SB. A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem. 2011;113:236–247.
  • Harokopakis E, Hajishengallis G, Michalek SM. Effectiveness of liposomes possessing surface-linked recombinant B subunit of cholera toxin as an oral antigen delivery system. Infect Immun. 1998;66:4299–4304.
  • Ye T, Yan S, Hu Y, et al. Synthesis and volume phase transition of concanavalin A-based glucose-responsive nanogels. Polym Chem. 2014;5:186–194.
  • Shao X, Liu Q, Zhang C, et al. Concanavalin A-conjugated poly (ethylene glycol)–poly (lactic acid) nanoparticles for intranasal drug delivery to the cervical lymph nodes. J Microencapsul. 2013;30:780–786.
  • Jain SK, Haider T, Kumar A, et al. Lectin-conjugated clarithromycin and acetohydroxamic acid-loaded PLGA nanoparticles: a novel approach for effective treatment of H. pylori. AAPS PharmSciTech. 2016;17:1131–1140.
  • Gao X, Chen J, Tao W, et al. UEA I-bearing nanoparticles for brain delivery following intranasal administration. Int J Pharm. 2007;340:207–215.
  • Clark M, Hirst BH, Jepson MA. Lectin-mediated mucosal delivery of drugs and microparticles. Adv Drug Deliv Rev. 2000;43:207–223.
  • Irache JM, Durrer C, Duchêne D, et al. Bioadhesion of lectin-latex conjugates to rat intestinal mucosa. Pharm Res. 1996;13:1716–1719.
  • Moulari B, Béduneau A, Pellequer Y, et al. Lectin-decorated nanoparticles enhance binding to the inflamed tissue in experimental colitis. J Control Release. 2014;188:9–17.
  • Piazza J, Hoare T, Molinaro L, et al. Haloperidol-loaded intranasally administered lectin functionalized poly(ethylene glycol)-block-poly(d,l)-lactic-co-glycolic acid (PEG-PLGA) nanoparticles for the treatment of schizophrenia. Eur J Pharm Biopharm. 2014;87:30–39.
  • Pardridge WM. Blood-brain barrier delivery. Drug Discov Today. 2007;12:54–61.
  • Ma Y-P, Ma M-M, Cheng S-M, et al. Intranasal bFGF-induced progenitor cell proliferation and neuroprotection after transient focal cerebral ischemia. Neurosci Lett. 2008;437:93–97.
  • Luppi B, Bigucci F, Abruzzo A, et al. Freeze-dried chitosan/pectin nasal inserts for antipsychotic drug delivery. Eur J Pharm Biopharm. 2010;75:381–387.
  • Kamel MH, Moore PC, Bissada NK, et al. Potential years of life lost due to urogenital cancer in the United States: trends from 1972 to 2006 based on data from the SEER database. J Urol. 2012;187:868–871.
  • Neutsch L, Eggenreich B, Herwig E, et al. Lectin bioconjugates trigger urothelial cytoinvasion – a glycotargeted approach for improved intravesical drug delivery. Eur J Pharm Biopharm. 2012;82:367–375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.